We describe the commissioning of the first dedicated commercial total body irradiation (TBI) unit in clinical operation. The Best Theratronics GammaBeam 500 is a Co‐60 teletherapy unit with extended field size and imaging capabilities. Radiation safety, mechanical and imaging systems, and radiation output are characterized. Beam data collection, calibration, and external dosimetric validation are described. All radiation safety and mechanical tests satisfied relevant requirements and measured dose distributions meet recommendations of American Association of Physicists in Medicine (AAPM) Report #17. At a typical treatment distance, the dose rate in free space per unit source activity using the thick flattening filter is 1.53 × 10−3 cGy*min−1*Ci−1. With a 14,000 Ci source, the resulting dose rate at the midplane of a typical patient is approximately 17 and 30 cGy/min using the thick and thin flattening filters, respectively, using the maximum source to couch distance. The maximum useful field size, defined by the 90% isodose line, at this location is 225 × 78 cm with field flatness within 5% over the central 178 × 73 cm. Measured output agreed with external validation within 0.5%. End‐to‐end testing was performed in a modified Rando phantom. In‐house MATLAB software was developed to calculate patient‐specific dose distributions using DOSXYZnrc, and fabricate custom 3D‐printed forms for creating patient‐specific lung blocks. End‐to‐end OSLD and diode measurements both with and without lung blocks agreed with Monte Carlo calculated doses to within 5% and in‐phantom film measurements validated dose distribution uniformity. Custom lung block transmission measurements agree well with design criteria and provide clinically favorable dose distributions within the lungs. Block placement is easily facilitated using the flat panel imaging system with an exposure time of 0.01 min. In conclusion, a novel dedicated TBI unit has been commissioned and clinically implemented. Its mechanical, dosimetric, and imaging capabilities are suitable to provide state‐of‐the‐art TBI for patients as large as 220 cm in height and 78 cm in width.
Purpose: To evaluate the magnitude of interobserver variability in pretreatment image registration for lung stereotactic body radiation therapy patients in aggregate and within 3 clinical subgroups and to determine methods to identify patients expected to demonstrate larger variability. Methods and Materials: Retrospective image registration was performed for the first and last treatment fraction for 10 lung stereotactic body radiation therapy patients by 16 individual observers (5 physicians, 6 physicists, and 5 therapists). Registration translation values were compared within and between subgroups overall and between the first and the last fractions. Four metrics were evaluated as possible predictors for large interobserver variability. Results: The mean 3-dimensional displacement vector for all patients over all comparisons was 2.4 ± 1.8 mm. Three patients had mean 3-dimensional vector differences >3 mm. This cohort of patients showed a significant interfraction difference in variance ( P value = .01), increasing from first fraction to last. A significant difference in interobserver variability was observed between physicians and physicists ( P value < .01) and therapists and physicists ( P value < .01) but not between physicians and therapists ( P value = .07). Three of the 4 quantities evaluated as potential predictive metrics showed statistical correlation with increased interobserver variation, including target excursion and local target/lung contrast. Conclusion: Variability in pretreatment image guidance represents an important treatment consideration, particularly for stereotactic body radiation therapy, which employs small margins and a small number of treatment fractions. As a result of the data presented here, we have initiated weekly “registration rounds” to familiarize all staff physicians with the target and normal anatomy for each stereotactic body radiation therapy patient and minimize interobserver variations in image registration prior to treatment. The metrics shown here are capable of identifying patients for which large interobserver variations would be anticipated. These metrics may be used in the future to develop thresholds for additional interventions to mitigate registration variations.
The use of kilovoltage cone‐beam computed tomography (kV‐CBCT) or megavoltage computed tomography (MVCT) for image guidance prior to lung stereotactic body radiation therapy (SBRT) is common clinical practice. We demonstrate that under equivalent respiratory conditions, image guidance using both kV‐CBCT and MVCT may result in the inadequate estimation of the range of target motion under free‐breathing (FB) conditions when standard low‐density window and levels are used. Two spherical targets within a respiratory motion phantom were imaged using both long‐exhale (LE) and sinusoidal respiratory traces. MVCT and kV‐CBCT images were acquired and evaluated for peak‐to‐peak amplitudes of 10 or 20 mm in the cranial‐caudal direction, and with 2, 4 or 5 s periods. All images were visually inspected for artifacts and conformity to the ITV for each amplitude, period, trace‐type, and target size. All LE respiratory traces required a lower threshold HU window for MVCT and kV‐CBCT compared to sinusoidal traces to obtain 100% volume conformity compared with the theoretical ITV (ITVT). Excess volume was less than 2% for all kV‐CBCT contours regardless of trace‐type, breathing period, or amplitude, while the maximum excess volume for MVCT was 48%. Adjusting window and level to maximize conformity with the ITVT is necessary to reduce registration uncertainty to less than 5 mm. To fully capture target motion with either MVCT or kV‐CBCT, substantial changes in HU levels up to −600 HU are required which may not be feasible clinically depending on the target's location and surrounding tissue contrast. This registration method, utilizing a substantially decreased window and level compared to standard low‐density settings, was retrospectively compared to the automated registration algorithm for five lung SBRT patients exposed to pre‐treatment kV‐CBCT image guidance. Differences in registrations in the super‐inferior (SI) direction greater than the commonly used ITV to PTV margin of 5 mm were encountered for several cases. In conclusion, pre‐treatment image guidance for lung SBRT targets using MVCT or kV‐CBCT is unlikely to capture the full extent of target motion as defined by the ITVT and additional caution is warranted to avoid registration errors for small targets and patients with LE respiratory traces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.