Fast-charging is a key requirement for customer acceptance of battery electric vehicles. In this work, various methods for lithiumplating detection are applied to prismatic hard-case lithium-ion cells to demonstrate their applicability for large-format automotive cells despite possible thermal and electrochemical inhomogeneities. Different fast-charging profiles with a charging time of less than 30 min from 10% to 80% state-of-charge are examined with methods based on coulombic efficiency, cell voltage analysis and swelling force. To validate these results, a lifetime cycling test with a subsequent cell opening is performed, followed by a discussion on lithium-plating detectability and the restrictions of each method.In order to further illustrate the applicability of the lithium-plating detection methods, the fast-charging ability of two cells with the same format but different cathode active materials, namely NMC622 and NMC811, are compared. Furthermore, a coupled electrochemical-thermal simulation is performed to study the effect of the cell design on the fast-charging ability and to elucidate why a higher cell energy density does not necessarily lead to a worse fast-charging ability.
SUMMARYA comprehensive finite element method for three-dimensional simulations of stationary and transient electrochemical systems including all multi-ion transport mechanisms (convection, diffusion and migration) is presented. In addition, non-linear phenomenological electrode kinetics boundary conditions are accounted for. The governing equations form a set of coupled non-linear partial differential equations subject to an algebraic constraint due to the electroneutrality condition. The advantage of a convective formulation of the ion-transport equations with respect to a natural application of homogeneous flux boundary conditions is emphasized. For one of the numerical examples, an analytical solution for the coupled problem is provided, and it is demonstrated that the proposed computational approach is robust and provides accurate results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.