The morphology of leaf venation has been studied repeatedly and various systems have been proposed for the classification of the observed leaf venation patterns. Almost nothing is known, however, about the functional properties of the various venation types. Using a computer modelling approach we analysed the water transport properties of typical craspedodromous and brochidodromous venation patterns. The water transport through the leaf and the veins was modelled as a fluid flow through a porous medium and the mathematical model was solved with the Finite Element Method. The simulations illustrate that the leaf margin represents a critical region in terms of water supply. The results provide a plausible functional explanation for three well known phenomena: 1) the correlation between craspedodromous venation and the formation of leaf teeth; 2) the fact that craspedodromous venation is more common in temperate than in tropical regions and 3) the fact that xeromorphic leaves tend to have more closed venation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.