Bioenergy projects can lead to direct and indirect land use change (LUC), which can substantially affect greenhouse gas balances with both beneficial and adverse outcomes for bioenergy's contribution to climate change mitigation. The causes behind LUC are multiple, complex, interlinked, and change over time. This makes quantification uncertain and sensitive to many factors that can develop in different directions—including land use productivity, trade patterns, prices and elasticities, and use of by‐products associated with biofuels production. Quantifications reported so far vary substantially and do not support the ranking of bioenergy options with regard to LUC and associated emissions. There are however several options for mitigating these emissions, which can be implemented despite the uncertainties. Long‐rotation forest management is associated with carbon emissions and sequestration that are not in temporal balance with each other and this leads to mitigation trade‐offs between biomass extraction for energy use and the alternative to leave the biomass in the forest. Bioenergy's contribution to climate change mitigation needs to reflect a balance between near‐term targets and the long‐term objective to hold the increase in global temperature below 2°C (Copenhagen Accord). Although emissions from LUC can be significant in some circumstances, the reality of such emissions is not sufficient reason to exclude bioenergy from the list of worthwhile technologies for climate change mitigation. Policy measures to minimize the negative impacts of LUC should be based on a holistic perspective recognizing the multiple drivers and effects of LUC. This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment
Sustainability certification schemes and standards are meant to prevent a range of unacceptable socioeconomic and environmental consequences, such as threats to biodiversity. While there is wide support for conserving biodiversity, operationalizing this support in the form of guiding principles, criteria/indicators, and legislation is complicated. This study investigates how and to what extent 26 sustainability standards (eleven for forest management, nine for agriculture and six biofuel-related) consider biodiversity, by assessing how they seek to prevent actions that can threaten biodiversity as well as how they support actions aimed at biodiversity conservation. For this purpose, a benchmark standard was developed, meant to represent a case with very high ambitions concerning biodiversity conservation. Of the assessed standards, the biofuel-related standards demonstrated the highest level of compliance with the benchmark. On average, they complied with 72% of the benchmark's component criteria, compared to 61% for the agricultural standards and 60% for the forestry standards. Fairtrade, Sustainable Agriculture Network/Rainforest Alliance (SAN/RA), Roundtable on Sustainable Palm Oil (RSPO), and Roundtable on Responsible Soy (RTRS) were particularly stringent, while Green Gold Label S5 (GGLS5), PEOLG, Global Partnership for Good Agricultural Practices (GLOBALGAP), European Union Organic (EU Organic), National Organic Program (NOP), Green Gold Label S2 (GGLS2), and International Sustainability & Carbon Certification (ISCC) were particularly unstringent. All eleven forestry standards, six of the nine agricultural standards, and all six biofuel-related standards addressed ecosystem conversion, ranging from requiring that high conservation value areas be identified and preserved to requiring full protection. Finally, key barriers to, and challenges for, certification schemes are discussed and recommendations are made for further development of sustainability standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.