We present the results of a next-to-leading order calculation of QCD corrections to the production of an on-shell top-anti-top quark pair in association with two flavored b-jets. Besides studying the total cross section and its scale dependence, we give several differential distributions. Where comparable, our results agree with a previous analysis. While the process under scrutiny is of major relevance for Higgs boson searches at the LHC, we use it to demonstrate the ability of our system built around Helac-Phegas to tackle complete calculations at the frontier of current studies for the LHC. On the technical side, we show how the virtual corrections are efficiently computed with Helac-1Loop, based on the OPP method and the reduction code CutTools, using reweighting and Monte Carlo over color configurations and polarizations. As far as the real corrections are concerned, we use the recently published Helac-Dipoles package. In connection with improvements of the latter, we give the last missing integrated dipole formulae necessary for a complete implementation of phase space restriction dependence in the massive dipole subtraction formalism.
Results for next-to-leading order QCD corrections to the pp(pp) → tt → W + W − bb → e + ν e µ −ν µ bb + X processes with complete off-shell effects are presented for the first time. Double-, single-and non-resonant top contributions of the order O(α 3 s α 4 ) are consistently taken into account, which requires the introduction of a complex-mass scheme for unstable top quarks. Moreover, the intermediate W bosons are treated off-shell. Comparison to the narrow width approximation for top quarks, where non-factorizable corrections are not accounted for is performed. Besides the total cross section and its scale dependence, several differential distributions at the TeVatron run II and the LHC are given. In case of the TeVatron the forward-backward asymmetry of the top is recalculated afresh. With inclusive selection cuts, the forward-backward asymmetry amounts to A t F B = 0.051 ± 0.0013. Furthermore, the corrections with respect to leading order are positive and of the order 2.3% for the TeVatron and 47% for the LHC. A study of the scale dependence of our NLO predictions indicates that the residual theoretical uncertainty due to higher order corrections is 8% for the TeVatron and 9% for the LHC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.