The locomotor hyperactivity induced by systemic or local (nucleus accumbens) D-amphetamine injections can be blocked by systemic or local (prefrontal cortex) injections of prazosin, an alpha1-adrenergic antagonist (Blance et al., 1994). Microdialysis studies performed on freely moving animals indicated that prazosin (0.5 mg/kg, i.p.) does not modify the increase in the extracellular dopamine (DA) levels in the nucleus accumbens that are induced by D-amphetamine (2.0 mg/kg, i.p.), but it inhibits the D-amphetamine-induced locomotor hyperactivity (-63%, p < 0.0001). No behavioral activation occurred after the bilateral local perfusion of 3 microM D-amphetamine in the nucleus accumbens, although it led to a fivefold increase in extracellular DA levels. This increase in extracellular DA levels was not affected by prazosin (0.5 mg/kg, i.p.). When an intraperitoneal injection of D-amphetamine (0.5 mg/kg) was superimposed to the continuous local perfusion of 3 microM D-amphetamine, it induced a 64% increase in the extracellular DA levels in the nucleus accumbens, and this response was associated with simultaneous behavioral activation. Both the increases in extracellular DA levels and in locomotor activity were completely blocked by a pretreatment with prazosin, injected either systemically (0.5 mg/kg, i.p.) or locally and bilaterally into the prefrontal cortex (500 pmol/side). Complementary experiments indicated that the focal application of D-amphetamine requires at least a 4.8-fold higher increase in DA output compared with systemic D-amphetamine for the behavioral effects to be elicited. Altogether, these results suggest that locomotor activating effects of D-amphetamine are caused by the stimulation of cortical alpha1-adrenergic receptors by noradrenaline, which increases the release of a functional part of subcortical DA.
Drugs of abuse, such as psychostimulants and opiates, are generally considered as exerting their locomotor and rewarding effects through an increased dopaminergic transmission in the nucleus accumbens. Noradrenergic transmission may also be implicated because most psychostimulants increase norepinephrine (NE) release, and numerous studies have indicated interactions between noradrenergic and dopaminergic neurons through alpha1-adrenergic receptors. However, analysis of the effects of psychostimulants after either destruction of noradrenergic neurons or pharmacological blockade of alpha1-adrenergic receptors led to conflicting results. Here we show that the locomotor hyperactivities induced by d-amphetamine (1-3 mg/kg), cocaine (5-20 mg/kg), or morphine (5-10 mg/kg) in mice lacking the alpha1b subtype of adrenergic receptors were dramatically decreased when compared with wild-type littermates. Moreover, behavioral sensitizations induced by d-amphetamine (1-2 mg/kg), cocaine (5-15 mg/kg), or morphine (7.5 mg/kg) were also decreased in knock-out mice when compared with wild-type. Ruling out a neurological deficit in knock-out mice, both strains reacted similarly to novelty, to intraperitoneal saline, or to the administration of scopolamine (1 mg/kg), an anti-muscarinic agent. Finally, rewarding properties could not be observed in knock-out mice in an oral preference test (cocaine and morphine) and conditioned place preference (morphine) paradigm. Because catecholamine tissue levels, autoradiography of D1 and D2 dopaminergic receptors, and of dopamine reuptake sites and locomotor response to a D1 agonist showed that basal dopaminergic transmission was similar in knock-out and wild-type mice, our data indicate a critical role of alpha1b-adrenergic receptors and noradrenergic transmission in the vulnerability to addiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.