We demonstrate continues-wave 1 W at 490 nm on a 2.5 cm(3) micro-optical bench using single-path second-harmonic generation with a periodically poled MgO:LiNbO(3) bulk crystal. The pump laser is a distributed Bragg reflector tapered diode laser having a single-frequency spectrum and a pump power of 9.5 W. Based on that 1 W blue light could be achieved resulting in an optical conversion efficiency of 11%. Furthermore, the module has an output power stability of better than 2% and the blue laser beam shows an nearly diffraction limited beam quality of M(2)(sigma) = 1.2 in vertical and M(2)(sigma) = 2 in lateral direction.
We demonstrate laser cooling of trapped beryllium ions at 313 nm using a frequency-doubled extended cavity diode laser operated at 626 nm, obtained by cooling a ridge waveguide diode laser chip to -31°C. Up to 32 mW of narrowband 626 nm laser radiation is obtained. After passage through an optical isolator and beam shaping optics, 14 mW of 626 nm power remains of which 70% is coupled into an external enhancement cavity containing a nonlinear crystal for second-harmonic generation. We produce up to 35 μW of 313 nm radiation, which is subsequently used to laser cool and detect 6×10(2) beryllium ions, stored in a linear Paul trap, to a temperature of about 10 mK, as evidenced by the formation of Coulomb crystals. Our setup offers a simple and affordable alternative for Doppler cooling, optical pumping, and detection to presently used laser systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.