This publication deals with the practical challenge of describing the impurity influence on the fixed-point temperature of zinc. For this, the sum of individual estimate (SIE) approach is applied to miniaturized fixed-point cells (MFPC) filled with high-purity zinc that can be used in industrial applications. This includes comparative analyses by glow discharge mass spectroscopy as well as mass spectroscopy with inductive coupled plasma to quantify the impurity concentrations in zinc. Furthermore, the element-specific and concentration-dependent temperature deviations are presented for the fixed-point material zinc. For this, binary phase diagrams as well as thermal calculations and experimental data were analysed to extract the relevant sensitivity coefficients. Besides, results from SIE analyses of MFPCs are presented and their uncertainties are compared. On this basis, practical limits of the SIE method are identified and discussed.
Blackbodies are sources of temperature radiation that are used for calibration of radiation thermometers. Their effective emissivity should be close to the value of 1 to approximate an ideal Planckian radiator. Their effective emissivity depends on the geometry of their cavity and the used material. It can be estimated by measurements, but often it is calculated by numerical methods. For typical graphite blackbodies, it was shown in the past that high effective emissivities better than 0.999 can be reached. In this paper, calculations of the effective emissivity of a alumina blackbody are presented. Alumina is a new material for blackbodies, with different radiation properties. Using two calculation methods (integrative cavity method and Monte Carlo method), the effective cavity emissivity for blank and coated alumina is estimated. It is shown that effective spectral emissivities up to 0.999 87 can be reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.