The radiative improved (RI) mode is a tokamak regime offering many
attractive reactor features. In the article, the RI mode of TEXTOR-94 is
shown to follow the same scaling as the linear ohmic confinement regime and is thus identified
as one of the most fundamental tokamak operational
regimes. The current understanding derived from experiments and modelling
of the conditions necessary for sustaining the mode is reviewed, as are the
mechanisms leading to L-RI mode transition. The article discusses the compatibility of high
impurity seeding with the low central power density of a burning reactor,
as well as RI mode properties at and beyond the Greenwald density.
Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in confinement and pedestal behaviour before and after the ITER-like wall installation have been better characterized towards the development of high fusion yield scenarios in DT. Post-mortem analyses of the plasma-facing components have confirmed the previously reported low fuel retention obtained by gas balance and shown that the pattern of deposition within the divertor has changed significantly with respect to the JET carbon wall campaigns due to the absence of thermally activated chemical erosion of beryllium in contrast to carbon. Transport to remote areas is almost absent and two orders of magnitude less material is found in the divertor.
Experiments performed at JET during the past two years show that, in high triangularity H-mode plasmas with I p = 2.5 MA, n e /n Gr ≈ 1.0, it is possible to radiate separately up to ≈40% of the total injected power on closed flux surfaces in the pedestal region (argon seeding) and up to ≈50% of the injected power in the divertor region (nitrogen seeding), while maintaining the confinement improvement factor at the value required for ITER, H 98(y, 2) ≈ 1.0. The total radiated power fraction achieved in both cases (65-70%) is close to that required for ITER. However, Type I ELMs observed with impurity seeding have the same characteristics as that observed in reference pulses without seeding: decreasing plasma energy loss per ELM with increasing pedestal collisionality. One has to reach the Type III ELM regime to decrease the transient heat load to the divertor to acceptable values for ITER, although at the expense of confinement. The feasibility of an integrated scenario with Type-III ELMs, and q 95 = 2.6 to compensate for the low H factor, has been demonstrated on JET. This scenario would meet ITER requirements at 17 MA provided that the IPB98 scaling for energy content is accurate enough, and provided that a lower dilution is obtained when operating at higher absolute electron density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.