In 1997 an inversion in the Ionian upper‐layer circulation was documented and ascribed to a massive inflow of Aegean dense waters associated with the Eastern Mediterranean Transient (EMT) and not to the wind‐stress (Borzelli et al., 2009). Here we generalize the concept hypothesizing that such inversions are possible even in the absence of the Aegean influence. Indeed, salinity and density data collected in the Southern Adriatic, the main source of the Eastern Mediterranean deep water, show decadal variations coherent with changes in the sea level height in the northern Ionian. Scaling considerations suggest that the redistribution of Ionian water masses, resulting from changes in the thermohaline properties of waters entering the basin, can sustain inversions of the upper‐layer circulation. Therefore, we propose a feedback mechanism (named the Adriatic‐Ionian Bimodal Oscillating System – BiOS) between variations in the thermohaline properties of waters formed in the Southern Adriatic and the Ionian circulation.
Abstract. Analysis of 20-year time-series of the vertically averaged salinity and nutrient data in the Southern Adriatic shows that the two parameters are subject to strong decadal variability. In addition, it is documented that nutrient and salinity variations are out of phase. Nutrients in the Ionian and in the Adriatic vary in parallel except that generally the nutrient content in the Adriatic is lower than in the Ionian, a fact that has been attributed to primary producer consumption following the winter convective mixing. As shown earlier, North Ionian Gyre (NIG) changes its circulation sense on a decadal scale due to the Bimodal Oscillating System, i.e. the feedback mechanism between the Adriatic and Ionian. Cyclonic circulation causes a downwelling of the nitracline along the borders of the NIG and a decrease in the nutrient content of the water flowing into the Adriatic across the Otranto Strait, and vice versa. In addition, the highly oligotrophic central area of the Ionian shows annual blooms only during cyclonic NIG circulation. Inversion of the sense of the NIG results in the advection of Modified Atlantic Water or of the Levantine/Eastern Mediterranean waters in the Adriatic. Here, we show that the presence of allochtonous organisms from Atlantic/Western Mediterranean and Eastern Mediterranean/temperate zone in the Adriatic are concurrent with the anticyclonic and cyclonic circulations of the NIG, respectively. On the basis of the results presented, a revision of the theory of Adriatic ingressions formulated in the early 1950s is proposed.
We study the impact of decadal inversions of the Ionian upper layer circulation (denominated as Adriatic‐Ionian Bimodal Oscillation System) on thermohaline properties of the Levantine and Cretan Seas. Lagrangian drifter data and surface geostrophic currents show that the Atlantic Water (AW) flow is well organized and most intense when the Ionian circulation is cyclonic. During the Ionian anticyclonic phase, the AW spreading pathway is the longest, contributing to its prolonged mixing and higher salinity once it reaches the Levantine. Thus, the Levantine basin is subject to less dilution by AW during the anticyclonic surface circulation phase. Empirical orthogonal function analysis of the sea level shows a large‐amplitude circular feature in the northern Ionian which matches the cyclonic/anticyclonic gyre obtained from Lagrangian measurements. Furthermore, it reveals the out‐of‐phase variability of the North Ionian Gyre and the Aegean and Levantine sea levels. We further show that the surface salinity of the Levantine basin variation is out of phase with that of the Ionian surface layers. Salinity variations of the deepwater column in the Aegean are out of phase with the Ionian surface salinity values, owing probably to a fast transfer of the surface salinity changes via winter deep convection. The changing of the Levantine and Cretan Seas' salinity parallel to the Ionian circulation inversions suggests that the preconditioning for the eastern Mediterranean transient (EMT) is driven by internal processes. As the Ionian inversions are cyclical events, we conclude that the EMT is not an isolated episode but potentially a recurrent phenomenon.
Maps of the remotely sensed Absolute Dynamic Topography (ADT) and Sea Surface Temperature (SST) over the Eastern Mediterranean in the period June 1993 to June 2001 show a dramatic and sudden change in the sea surface structure. This change, which is presumably associated with the relaxation of the Eastern Mediterranean Transient (EMT), had taken place by the middle of 1997 and consisted of a complete reversal of the Ionian upper‐layer circulation from anticyclonic to cyclonic. In the EMT phase, SST and ADT maps suggest enhanced communication between the Ionian and the Aegean basins as well as Aegean waters spreading northward along the eastern Ionian flank. Negative wind vorticity in the Ionian suggests that the switch of the upper‐layer circulation from anticyclonic to cyclonic cannot be explained in terms of the wind forcing. Therefore, we suggest the predominance of the baroclinic vorticity production term in determining the upper‐layer circulation inversion.
Abstract. Previous studies have demonstrated that the salinity in the Levantine basin depends on the intensity of the Atlantic water (AW) inflow. Moreover, its spreading eastward (to the Levantine basin) or northward (to the Ionian Sea) is determined by the Ionian circulation pattern, i.e. by the Adriatic-Ionian Bimodal Oscillating System (BiOS) mechanism. The aim of this paper is to relate salinity variations in the Levantine basin to the salt content variability in the core of the Levantine Intermediate Water (LIW) passing through the Sicily Channel (SC) and its possible impact on the Western Mediterranean Transition -WMT (i.e. the sudden salinity and temperature increase in the deep layer of the AlgeroProvençal subbasin occurring since 2004). From the historical data set MEDAR/MEDATLAS in the Levantine and northern Ionian, we present evidence of decadal occurrences of extreme salinities associated with the varying influx of AW over the last 60 yr. Furthermore, we show that the salinity variations in the two subbasins are out of phase. Highsalinity episodes in the Levantine are a pre-conditioning for the potential occurrence of the events like the Eastern Mediterranean Transient (EMT). Cross-correlation between the salinity time series in the Levantine basin and in the SC suggests that the travel time of the LIW is between 10 and 13 yr. Comparing the timing of the salinity increase associated with the WMT and the salinity in the LIW core in the SC, we estimate that the total time interval needed for the signal propagating from the Levantine to reach the deep mixed layers of the Algero-Provençal subbasin is about 25 yr.We also showed that the extra salt input from the eastern Mediterranean contribute up to about 60 % to the salt content increase in the bottom layer of the western Mediterranean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.