The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.
Results from the first experiments to drive Alfven eigenmodes (AEs) with antennas external to a tokamak plasma are presented. In ohmically heated plasma discharges, direct experimental measurements of the damping of toroidicity induced AEs (TAEs) have allowed an identification of different regimes corresponding to different dominant TAE absorption mechanisms with a wide range of damping rates, 10-3 ⩽ γ/w ⩽ 10-1. In plasmas heated by ion cyclotron resonance heating, neutral beam injection heating, lower hybrid heating and high plasma current ohmic heating, a new class of weakly damped Alfven eigenmodes, the kinetic Alfven eigenmodes, predicted in theoretical models that include finite Larmor radius and finite parallel electric field effects, has been identified experimentally
Long pulse operation on the Tore Supra tokamak has entered a new phase, characterized by the use of heating power level in excess of 10 MW, during pulses lasting several tens of resistive times. This has been made possible by the use of ion cyclotron range of frequency (ICRF) heating (9 MW coupled to the plasma at 57 MHz), combined with lower hybrid current drive (LHCD: 3 MW at 3.7 GHz) and efficient fuelling techniques (supersonic gas injection, pellets). This paper addresses key technological, operational and physics issues related to the long pulse operation of the Tore Supra ICRF system and required for a reactor: R&D on the ICRF plant, real-time control and safety procedures, integration with other tokamak subsystems, experimental investigation and theoretical modelling of the edge ICRF physics (wave coupling, heat loads on antenna front faces). As far as possible lessons are drawn from the experience gained on Tore Supra for the design and operation of a next-step device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.