We have developed a technique to measure the fluorescence of a pH-sensitive dye (2,7-biscarboxyethyl-5(6)-carboxyfluorescein) in single glomerular mesangial cells in culture. The intracellular fluorescence excitation ratio of the dye was calibrated using the nigericin-high-K+ approach. In the absence of CO2-HCO3-, mesangial cells that are acid loaded by an NH+4 prepulse exhibit a spontaneous intracellular pH (pHi) recovery that is blocked either by ethylisopropylamiloride (EIPA) or removal of external Na+. This pHi recovery most probably reflects the activity of a Na+-H+ exchanger. When the cells are switched from a N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solution to one containing CO2-HCO3-, there is an abrupt acidification due to CO2 entry, which is followed by a spontaneous recovery of pHi to a steady-state value higher than that prevailing in HEPES. Both the rate of recovery and the higher steady-state pHi imply that the application of CO2-HCO3- introduces an increase in net acid extrusion from the cell. One third of total net acid extrusion in CO2-HCO3- is EIPA sensitive and most likely is mediated by the Na+-H+ exchanger. The remaining two thirds of acid extrusion could be caused by a decrease in the background acid-loading rate and/or the introduction of a new, HCO3- -dependent acid-extrusion mechanism. The HCO3- -induced alkalinization cannot be accounted for by a HCO3- -induced reduction in the acid-loading rate. The latter can be estimated by applying EIPA in the absence of HCO3- and observing the rate of pHi decline. We found that this acid-loading rate is only about one fifth as great as the total net acid extrusion rate in the presence of HCO3-. Indeed, two thirds of net acid extrusion in HCO3- is blocked by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), an inhibitor of HCO3- -dependent transport. Furthermore, the effects of EIPA and SITS were additive. Thus, in the presence of CO2-HCO3-, a SITS-sensitive-HCO3- -dependent transporter is the dominant mechanism of acid extrusion. This mechanism also accounts for the increase in steady-state pHi on addition of CO2-HCO3-.
Growth factors raise intracellular pH (pHi) by stimulating Na+/H+ exchange in the absence of HCO3-. In mutant cells that lack the Na+/H+ exchange activity, this alkalinization does not occur, and the cells do not proliferate without artificial elevation of pHi. It has therefore been widely suggested that an early pHi increase is a necessary signal for mitogenesis. In the presence of HCO3- however, growth factors fail to raise pHi in A431 cells, renal mesangial cells and 3T3 fibroblasts. In mesangial cells, arginine vasopressin (AVP) raises pHi in the absence of HCO3-, but lowers it when HCO3- is present; growth is stimulated under both conditions. We report here that, in the presence of HCO3-, AVP stimulates two potent HCO3- transporters, as well as the Na+/H+ exchanger. These are the Na+-dependent and Na+-independent Cl-/HCO3- exchangers. Our results indicate that AVP causes acidification in the presence of HCO3- because, at the resting pHi, it stimulates Na+-independent Cl-/HCO3- exchange (which lowers pHi) more than it stimulates the sum of Na+/H+ exchange and Na+-dependent Cl-/HCO3- exchange (both of which raise pHi). The stimulation of three acid-base transporters by the growth factor AVP greatly enhances the ability of the cell to regulate pHi.
1. We used the pH-sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) to study the regulation of intracellular pH (pH1) in single pyramidal neurons freshly isolated from the hippocampal CAI region of immature (2-to 10-day-old) and more mature (21-to 30-day-old) rats.2. Whether isolated from immature or mature rats, neurons had a broad range of initial pHi values (6 3-7 7) when the cells were examined in solutions buffered with Hepes and no CO2/HCO3-. The initial pH, distribution for neurons isolated from immature rats was best fitted with a Gaussian distribution with a mean of 6-95. In contrast, the initial pHi distribution for neurons isolated from mature rats was best fitted with the sum of two Gaussian distributions with means of 6-68 and 7-32.3. When neurons with a relatively low initial pHi in Hepes-buffered solutions were acid loaded, pH, recovered very slowly. Neurons with a relatively high initial pHi recovered rapidly. The rate constant for the exponential pHi recovery increased with initial pHi. All pHi recoveries required Nae. 4. Both for neurons with a relatively high (>7 705) and a relatively low (<7 05) initial pHi, net acid extrusion rates (Jttal = dpHi/dt x buffering power) decreased linearly with increasing pH,. Compared with the line for neurons with a relatively low initial pHi, that for neurons with a relatively high pH1 had a significantly greater slope and was alkaline shifted by 0-6-0-7 pH units.5. Removing external Nae in the absence of C02/HC03-caused pH1 to decrease by -0 3 in neurons with a relatively low initial pH,, and by -0 5 in neurons with a relatively high initial pHi. This initial acidification was followed by a slower, partial pH, recovery in -32% of neurons with a relatively low initial pH,, but only -14 % of neurons with a relatively high pHi.6. When exposed to C02/HC03-, all neurons initially acidified. Neurons with a relatively low initial pHi recovered to a pHi -0-2 pH units greater than the initial value. Among neurons with higher initial pHi values, some did not recover at all, whereas others recovered to a value similar to or above the initial pHi. On average, the final C02/HC03-pH1 for neurons with a relatively high initial pH1 was similar to the pHi in Hepes buffer. Neurons with a relatively high pHi in Hepes buffer continued to be more alkaline (by -0f2 pH units) in C02/HC03.
We used the pH-sensitive dye 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) to further characterize the mechanisms of intracellular pH (pHi) regulation in renal mesangial cells. In the accompanying paper [Am. J. Physiol. 255 (Cell Physiol. 24): C844-C856, 1988], we showed that acid extrusion from mesangial cells is mediated by both an ethylisopropylamiloride (EIPA)-sensitive Na+-H+ exchanger and a 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS)-sensitive-HCO3(-)-dependent mechanism. In this study, we examined the ionic dependencies of pHi-regulatory mechanisms in the presence of CO2-HCO3-. We found that in CO2-HCO3-, approximately 90% of the net acid extrusion occurring during recovery from an acid load is blocked by removing external Na+. Short-term (less than 15 min) removal of external Cl- has little effect on the rate of recovery in CO2-HCO3-. In contrast longer periods of external Cl- removal (1-2 h) blocks 40-60% of the rate of recovery, which is consistent with the hypothesis that a large fraction of the SITS-sensitive-HCO3(-)-dependent recovery mechanism described in the preceding paper is also Na+- and Cl(-)-dependent. Therefore, this Cl(-)-dependent component is probably mediated by a Na+-dependent Cl(-)-HCO3- exchanger. As much as 16% of total acid extrusion is insensitive to EIPA and long-term Cl- removal but is blocked by SITS. Thus either 1-2 h of Cl- removal is insufficient to wash out all internal Cl-, or a small component of acid extrusion is mediated by a Cl(-)-independent mechanism, such as the electrogenic Na+/HCO3- cotransporter. We also studied the effect on pHi of the removal and readdition of external Cl-, observing pHi changes consistent with the existence of a Na+-independent Cl(-)-HCO3- exchanger, which would presumably function as an acid loader. In contrast to the Na+-H+ exchanger and Na+-dependent Cl(-)-HCO3- exchanger, which are stimulated at low pHi, the Cl(-)-HCO3- exchanger is stimulated at high pHi. Thus the acid-extruding and acid-loading mechanisms have opposite pHi dependencies.
We used the fluorescent pH-sensitive dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) to monitor intracellular pH (pHi) in single astrocytes cultured from the forebrain of neonatal rats. When exposed to a nominally CO2/HCO3(-)-free medium buffered to pH 7.40 with HEPES at 37 degrees C, the cells had a mean pHi of 6.89. Switching to a medium buffered to pH 7.40 with 5% CO2 and 25 mM HCO3(-) caused the steady-state pHi to increase by an average of 0.35, suggesting the presence of a HCO3(-) -dependent acid-extrusion mechanism. The sustained alkalinization was sometimes preceded by a small transient acidification. In experiments in which astrocytes were exposed to nominally HCO3(-)-free (HEPES-buffered) solutions, the application and withdrawal of 20 mM extracellular NH4+ caused pHi to fall to a value substantially below the initial one. pHi spontaneously recovered from this acid load, stabilizing at a value approximately 0.1 higher than the one prevailing before the application of NH4+. In other experiments conducted on cell bathed in HEPES-buffered solutions, removing extracellular Na+ caused pHi to decrease rapidly by 0.5. Returning the Na+ caused pHi to increase rapidly, indicating the presence of an Na(+)-dependent/HCO3(-)-dependent acid-extrusion mechanism; the final pHi after returning Na+ was approximately 0.08 higher than the initial value. This pHi recovery elicited by returning Na+ was not substantially affected by 50 microM ethylisopropylamiloride (EIPA), but was speeded up by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS).(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.