Simultaneous quantification of DNA and Ki-67 proliferation-associated antigen was performed using fluorescence image cytometry. In the MCF-7 cell line, the Ki-67 antigen content increases during the cell cycle, and its intranuclear distribution pattern varies. Quantitative evolution of Ki-67 content as a function of nuclear area makes it possible to define several pathways followed by cells going through the 2c compartment. 1) In some cells, the amount of Ki-67 antigen remains constant during G1 (Ki-67 stable pathway), and a characteristic speckled pattern can be observed. 2) In the larger fraction of cells analyzed, there is a postmitotic decrease in the Ki-67 (Ki-67 decrease pathway) content. In this pathway, labeling is located in the nucleoplasm in small nuclei, is located in nucleoli in intermediate-sized nuclei, and is absent from larger nuclei (G0). A progressive increase in Ki-67 content (Ki-67 increase pathway) was observed from intermediate-sized nuclei to S phase nuclei. From these results, we hypothesize that the Ki-67 stable pathway is the G1 phase of newly formed cells going directly to S phase in local optimal conditions of growth and that Ki-67 decrease pathway and Ki-67 increase pathway correspond to cells whose progression to S phase is regulated by extracellular factors.
Summary High levels of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) in breast cancer tissue extracts have been associated with rapid disease progression. In these studies, different enzyme-linked immunosorbent assay (ELISA) kits have been applied for the quantification, and consequently the ranges of uPA and PAI-1 levels reported differ considerably. Therefore, the Receptor and Biomarker Study Group (RBSG) of the European Organization for Research and Treatment of Cancer (EORTC) and a consortium of the BIOMED-1 project 'Clinical Relevance of Proteases in Tumor Invasion and Metastasis' initiated three collaborative between-laboratory assessment trials aimed at controlling uPA and PAI-1 antigen analyses. For this purpose, two control preparations were produced from different sources: pooled human breast cancer specimens (QC-240893) and human breast cancer xenografts raised in nude mice (QC-1 01094). The lyophilized preparations were stable for prolonged times (at least 3 and 27 months respectively) at 40C. Furthermore, a good parallelism following dilution was found for uPA and PAI-1. The data from QC trial no. 1 clearly indicated that acceptable betweenlaboratory coefficients of variation (CVs) for uPA (<8.2%) and PAI-1 (<16.6%) in QC-240893 could be achieved when the same type of ELISA kit (American Diagnostica) was used. From the second trial, in which ten EORTC laboratories each received five identical lyophilized QC-101094 samples, it appeared that the within-laboratory variations for uPA and PAI-1 determinations obtained by 'experienced' laboratories were lower (<12.9%) than those from non-experienced laboratories (<36.4%). In a third QC trial, five BIOMED-1 laboratories, all of which employed ELISA procedures for uPA and PAI-1, participated in six subsequent quality assessment rounds receiving five samples of QC-101094. Although for each laboratory the within-run CVs for uPA as well as for PAI-1 were low (<7.8%), the between-run CVs were found to be considerably higher (up to 56.2% for uPA and to 27.6% for PAI-1). Consequently, because of the different ELISA formats used, the absolute analyte values measured in the different laboratories varied substantially. The use of 'common external standards' in the different ELISAs resulted in a significant reduction of the between-laboratory CVs from 61.3% to 15.7% (uPA) and from 42.1% to 19.1% (PAI-1). The present data demonstrate that in multicentre studies the same ELISA kit should be used, and that external quality assurance (QA) is mandatory. Furthermore, it appears from the present study that standardization of the protein assay as a tissular parameter is imperative.Keywords: uPA; PAI-1; enzyme-linked immunosorbent assay; breast cancer; quality assessment; EORTC During the past decade, convincing evidence has accumulated progression and early death (Duffy et al, 1988;Janicke et al, 1990; suggesting that the urokinase-type plasminogen activator (uPA) Foekens et al, 1992, Spyratos et al, 1992Duffy, 1996). plays a k...
A new image processing system designed for densitometry and pattern analysis of microscopic specimens is described with special regard to the hardware, the software and the biologic applications. The data acquisition procedure involves the combination between the scanning of the preparation by means of a motorized stage and the scanning of successive fields by a mechanical device. The signal provided by the photomultiplier is converted into digital values which are directed to an on-line computer. The data processing is based on a one-pass computation involving automata theory and therefore it avoids the storage of the image in the computer memory. In so doing, an entire and continuous image of the whole preparation can be processed at the highest magnification of the microscope whatever the size of the analyzed specimen may be. A biologic application of the system is reported and concerns the automatic identification and counting of cells in the various phases of the mitotic cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.