It has been shown from an evaluation of the inverse reading of the dosemeter (1/M) against the inverse of the polarizing voltage (1/V), obtained with a number of commercially available ionization chambers, using dose per pulse values between 0.16 and 5 mGy, that a linear relationship between the recombination correction factor kS and dose per pulse (DPP) can be found. At dose per pulse values above 1 mGy the method of a general equation with coefficients dependent on the chamber type gives more accurate results than the Boag method. This method was already proposed by Burns and McEwen (1998, Phys. Med. Biol. 43 2033) and avoids comprehensive and time-consuming measurements of Jaffé plots which are a prerequisite for the application of the multi-voltage analysis (MVA) or the two-voltage analysis (TVA). We evaluated and verified the response of ionization chambers on the recombination effect in pulsed accelerator beams for both photons and electrons. Our main conclusions are: (1) The correction factor k(S) depends only on the DPP and the chamber type. There is no influence of radiation type and energy. (2) For all the chambers investigated there is a linear relationship between kS and DPP up to 5 mGy/pulse, and for two chambers we could show linearity up to 40 mGy/pulse. (3) A general formalism, such as that of Boag, characterizes chambers exclusively by the distance of the electrodes and gives a trend for the correction factor, and therefore (4) a general formalism has to reflect the influence of the chamber construction on the recombination by the introduction of chamber-type dependent coefficients.
The hyperthermia effect is based on its thermal influence on tumours. Therefore a controlled heating of the tumours must be achieved. In order to guarantee this, two points must be fulfilled at least: First, the hyperthermia equipment must have the necessary power and steering capability. Second, the distribution of the 'hyperthermic drug', the heat, has to be measured and controlled over the whole treatment time. To reach this aim both a sophisticated technique and a staff trained in hyperthermia are required. In treating patients such as those with cervical cancer, the volume to be exposed and the dosage must be clarified. This means that very special technical and medical conditions must be fulfilled in hyperthermia. To reach and maintain a certain level of quality, hyperthermia is embedded in a framework of procedures. These procedures are defined in the modules of quality management. Therefore quality management must contain specific guidelines for each application, i.e. coordinated standards have to be defined. When adapting these standards in hyperthermia, comparable and comprehensible results of the treatment are guaranteed. Furthermore, an analysis of the treatments under a scientific point of view will be possible and finally result in improvements of this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.