Thirty strains of algae were examined for their biosorption abilities in the uptake of cadmium, lead, nickel, and zinc from aqueous solution. A wide range of adsorption capacities between the different strains of algae and between the four metals can be observed. The cyanophyceae Lyngbya taylorii exhibited high uptake capacities for the four metals. The algae showed maximum capacities according to the Langmuir Adsorption Model of 1.47 mmol lead, 0.37 mmol cadmium, 0.65 mmol nickel, and 0.49 mmol zinc per gram of dry biomass. The optimum pH for L. taylorii was between pH 3 and 7 for lead, cadmium, and zinc and between pH 4 and 7 for nickel. Studies with the algae indicated a preference for the uptake of lead over cadmium, nickel, and zinc in a four metal solution. The metal binding abilities of L. taylorii could be improved by phosphorylation of the biomass. The modified biosorbent demonstrated maximum capacities of 2.52 mmol cadmium, 3.08 mmol lead, 2.79 mmol nickel, and 2.60 mmol zinc per gram of dry biomass. Investigations with phosphated L. taylorii indicated high capacities for the four metals also at low pH. The selectivity remained quite similar to the unmodified algae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.