The structure of foot-and-mouth disease virus has been determined at close to atomic resolution by X-ray diffraction without experimental phase information. The virus shows similarities with other picornaviruses but also several unique features. The canyon or pit found in other picornaviruses is absent; this has important implications for cell attachment. The most immunogenic portion of the capsid, which acts as a potent peptide vaccine, forms a disordered protrusion on the virus surface.
SUMMARYThe amino acid sequence RGD (arginine-glycine-aspartic acid) is highly conserved in the VPI protein of foot-and-mouth disease virus (FMDV), despite being situated in the immunodominant hypervariable region between amino acids 135 and 160. RGDcontaining proteins are known to be important in promoting cell attachment in several different systems, and we report here that synthetic peptides containing this sequence are able to inhibit attachment of the virus to baby hamster kidney (BHK) cells. Inhibition was dose-dependent and could be reversed on removal of the peptide. A synthetic peptide corresponding to a portion of the same hypervariable region but not containing the RGD sequence did not inhibit virus attachment under the same conditions. Antibody against the RGD region of VPI blocked attachment of the virus to BHK cells, and neutralizing monoclonal antibodies, which neutralize virus by preventing cell attachment, were blocked by RGD-containing peptides from binding virus in an ELISA test. Cleavage of the C-terminal region of virus VP1 in situ with proteolytic enzymes reduced cell attachment, and antiserum against a peptide corresponding to this region was also able to inhibit attachment of virus to BHK cells. These results indicate that the amino acid sequence RGD at positions 145 to 147 and amino acids from the C-terminal region of VP1 (positions 203 to 213) contribute to the cell attachment site on FMDV for BHK cells.
Changes resulting in altered antigenic properties of viruses nearly always occur on their surface and have been attributed to the substitution of residues directly involved in binding antibody. To investigate the mechanism of antigenic variation in foot-and-mouth disease virus (FMDV), variants that escape neutralization by a monoclonal antibody have been compared crystallographically and serologically with parental virus. FMDVs form one of the four genera of the Picornaviridae. The unenveloped icosahedral shell comprises 60 copies each of four structural proteins VP1-4. Representatives from each of the genera have similar overall structure, but differences in the external features. For example, human rhinovirus has a pronounced 'canyon' that is proposed to contain the cell attachment site, whereas elements of the attachment site for FMDV, which involves the G-H loop (residues 134-160) and C-terminus (200-213) of VP1, are exposed on the surface. Moreover, this G-H loop, which is a major antigenic site of FMDV, forms a prominent, highly accessible protrusion, a feature not seen in other picornaviruses. It is this loop that is perturbed in the variant viruses that we have studied. The amino acid mutations characterizing the variants are not at positions directly involved in antibody binding, but result in far-reaching perturbations of the surface structure of the virus. Thus, this virus seems to use a novel escape mechanism whereby an induced conformational change in a major antigenic loop destroys the integrity of the epitope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.