Vibrational relaxation has been seen in shock waves in propane, isobutene, isobutane, neopentane, and toluene dilute in krypton with the laser-schlieren technique. These experiments cover about 600-2200 K and post-shock pressures from 5 to 29 Torr. The process cannot be resolved in any for T<600 K, or in any for large molecule fraction. All the ultrasonic measurements of relaxation in these at room temperature show characteristic times in the 1-5 ns atm range, corresponding to fewer than five collisions, whereas the relaxation times in the shock waves range from 20 to 200 ns atm, with a clearly defined negative or "inverted" temperature dependence. It would seem the observed slowdown of relaxation with increasing T is simply a consequence of the much increased energy transfer required at high temperature in such large polyatomics when this is combined with a collision efficiency, here interpreted as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.