Smooth muscle myosin filaments are much less stable than the skeletal muscle counterpart. Smooth myosin requires higher concentration of Mg2+ than skeletal myosin to form thick filaments and addition of ATP disassembles the dephosphorylated smooth muscle myosin filaments into monomers but not phosphorylated ones. We found that the addition of caldesmon to dephosphorylated myosin induced the formation of the filaments under the conditions where myosin by itself is soluble or disassembled. Although the induced filaments were short at 1 mM Mg2+, they became medium sized and seemed like side polar filaments with prominent 14 nm periodicity at higher Mg2+ conditions (8 mM). In the presence of F-actin, myosin filaments induced by caldesmon were associated along actin filaments to form large structures. The association of actin and myosin filaments was observed only in the presence of caldesmon, suggesting that caldesmon cross-linked actin and myosin filaments. This cross-linking was disrupted by the addition of calmodulin. Caldesmon-induced filament formation of dephosphorylated myosin in the presence of Mg(2+)-ATP may explain the existence of myosin filaments in relaxed smooth muscle fibers. A similar effect of telokin on myosin filament assembly was also examined and is discussed.
Caldesmon, a major actin- and calmodulin-binding protein of smooth muscle, has been implicated in regulation of the contractile state of smooth muscle. The isolated protein can be phosphorylated by a co-purifying Ca2+/calmodulin-dependent protein kinase, and phosphorylation blocks inhibition of the actomyosin ATPase by caldesmon [Ngai & Walsh (1987) Biochem. J. 244, 417-425]. We have examined the phosphorylation of caldesmon in more detail. Several lines of evidence indicate that caldesmon itself is a kinase and the reaction is an intermolecular autophosphorylation: (1) caldesmon (141 kDa) and a 93 kDa proteolytic fragment of caldesmon can be separated by ion-exchange chromatography: both retain caldesmon kinase activity, which is Ca2+/calmodulin-dependent; (2) chymotryptic digestion of caldesmon generates a Ca2+/calmodulin-independent form of caldesmon kinase; (3) caldesmon purified to electrophoretic homogeneity retains caldesmon kinase activity, and elution of enzymic activity from a fast-performance-liquid-chromatography ion-exchange column correlates with caldesmon of Mr 141,000; (4) caldesmon is photoaffinity-labelled with 8-azido-[alpha-32P]ATP; labelling is inhibited by ATP, GTP and CTP, indicating a lack of nucleotide specificity; (5) caldesmon binds tightly to Affi-Gel Blue resin, which recognizes proteins having a dinucleotide fold. Autophosphorylation of caldesmon occurs predominantly on serine residues (83.3%), with some threonine (16.7%) and no tyrosine phosphorylation. Autophosphorylation is site-specific: 98% of the phosphate incorporated is recovered in a 26 kDa chymotryptic peptide. Complete tryptic/chymotryptic digestion of this phosphopeptide followed by h.p.l.c. indicates three major phosphorylation sites. Caldesmon exhibits a high degree of substrate specificity: apart from autophosphorylation, brain synapsin I is the only good substrate among many potential substrates examined. These observations indicate that caldesmon may regulate its own function (inhibition of the actomyosin ATPase) by Ca2+/calmodulin-dependent autophosphorylation. Furthermore, caldesmon may regulate other cellular processes, e.g. neurotransmitter release, through the Ca2+/calmodulin-dependent phosphorylation of other proteins such as synapsin I.
Caldesmon has been detected in smooth muscle and in a number of non-muscle cells. It binds both actin and myosin and may act as a regulator of contraction or a structural element in smooth muscle. The presence of caldesmon in striated muscle has not been well established. To address this issue, polyclonal antibodies and a panel of monoclonal antibodies were raised against chicken gizzard smooth muscle caldesmon and used to demonstrate that caldesmon is present in adult cardiac muscle of a variety of mammalian species. Western-blot analysis revealed the presence of caldesmon in ventricular myocytes isolated from rat heart. The epitopes for the individual monoclonal antibodies were mapped to the caldesmon primary structure using chymotryptic and 2-nitro-5-thiocyanatobenzoic acid fragments. Bovine and rat cardiac caldesmons were recognized only by a subset of these monoclonal antibodies, indicating primary sequence differences from the chicken smooth muscle protein. Immunofluorescence labelling of isolated myocytes from rat, rabbit and guinea pig cardiac muscle revealed a striated pattern of fluorescence labelling. Dual labelling of caldesmon and myosin or caldesmon and alpha-actinin demonstrated that caldesmon was present at the centre of the I-band rather than in the A-band, as might have been expected from the myosin binding properties of the smooth muscle protein. These results suggest a structural role for caldesmon in cardiac muscle cells.
Previously, it was reported that smooth muscle caldesmon is a protein kinase and is autophosphorylated [Scott-Woo, G.C., & Walsh, M.P. (1988) Biochem. J. 252, 463-472]. We separated a Ca2+/calmodulin-dependent protein kinase from caldesmon in the presence of 15 mM MgCl2. The Ca2+/calmodulin-dependent caldesmon kinase was purified by using a series of liquid chromatography steps and was characterized. The subunit molecular weight (MW) of the kinase was 56K by SDS gel electrophoresis and was autophosphorylated. After the autophosphorylation, the kinase became active even in the absence of Ca2+/calmodulin. The substrate specificity of caldesmon kinase was similar to the rat brain calmodulin-dependent multifunctional protein kinase II (CaM PK-II) and phosphorylated brain synapsin and smooth muscle 20-kDa myosin light chain. The purified kinase bound to caldesmon, and the binding was abolished in the presence of high MgCl2. Enzymological parameters were measured for smooth muscle caldesmon kinase, and these were KCaM = 32 nM, KATP = 12 microM, Kcaldesmon = 4.9 microM, and KMg2+ = 1.1 mM. Optimum pH was 7.5-9.5. The observed properties were similar to brain CaM PK-II, and, therefore, it was concluded that smooth muscle caldesmon kinase is the isozyme of CaM PK-II in smooth muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.