Dynamic responses of magnetic hysteresis loops in a few monolayer (ML) thick Co/Cu(001) films were studied using surface magneto-optic Kerr effect (SMOKE). For a fixed external field strength H0, the hysteresis loop area increases as a function of frequency with a power law and reaches a maximum at a resonance frequency Ω0. This Ω0 depends on the external periodic field strength as well as the thickness and roughness of the films. The thickness and roughness parameters were measured quantitatively using high-resolution low-energy electron diffraction. For a fixed film thickness, the Ω0 in the low field region is highly dependent on H0, which is consistent with the prediction from the mean field model. For two Co films with an equivalent thickness but different degrees of film roughness, the resonance frequency Ω0 is lower for the rougher films in all the field strengths studied. For a fixed field strength, the value of Ω0 decreases as Co film roughness increases in a few ML regime. The roughness dependency in Ω0 indicates that the slowing down in the magnetization reversal process is due to the increased film roughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.