[1] Changes in isotopic 13 C composition of solid residues and CO 2 evolved during decomposition of C 3 and C 4 plant materials were monitored over 10 months to determine carbon isotopic fractionation at successive stages of biodegradation. We selected plant materials of different chemical quality, e.g., Zea mays (leaves, stems, coarse roots, and fine roots), Lolium perenne (leaves and roots), Pinus pinaster (needles), and Cocos nucifera (coconut shell) and also characterized these by solid-state 13 C NMR. Roots were more lignified than aerial parts of the same species. Lignin was always depleted in 13 C (up to 5.2%) as compared with cellulose from the same sample. Proteins were enriched in 13 C in C 3 plants but depleted in maize. Cumulative CO 2 evolved fitted a doubleexponential model with two C pools of different lability. During early stages of decomposition, the CO 2 -C released was usually 13 C depleted as compared with the initial substrate but enriched at posterior stages. Consequently, with ongoing decomposition, the solid residue became 13 C depleted, which could only partly be explained by an accumulation of lignin-C. The extension of the initial 13 C depleted CO 2 -C phase was significantly correlated with the labile substrate C content, acid-detergent soluble fraction, and total N, pointing to a direct influence of plant quality on C isotopic dynamics during early stages of biodegradation. This isotopic fractionation can also lead to an underestimation of the contribution of plant residues to CO 2 -C when incubated in soils. We discuss possible implications of these mechanisms of 13 C fractionation in ecosystems.
Emissions of N2O were measured during the growth season over a year from grass swards under ambient (360 μL L−1) and elevated (600 μL L−1) CO2 partial pressures at the Free Air Carbon dioxide Enrichment (FACE) experiment, Eschikon, Switzerland. Measurements were made following high (56 g N m−2 yr−1) and low (14 g N m−2 yr−1) rates of fertilizer application, split over 5 re‐growth periods, to Lolium perenne, Trifolium repens and mixed Lolium/Trifolium swards. Elevated pCO2 increased annual emissions of N2O from the high fertilized Lolium and mixed Lolium/Trifolium swards resulting in increases in GWP (N2O emissions) of 179 and 111 g CO2 equivalents m−2, respectively, compared with the GWP of ambient pCO2 swards, but had no significant effect on annual emissions from Trifolium monoculture swards. The greater emissions from the high fertilized elevated pCO2Lolium swards were attributed to greater below‐ground C allocation under elevated pCO2 providing the energy for denitrification in the presence of excess mineral N. An annual emission of 959 mg N2O‐N m−2 yr−1 (1.7% of fertilizer N applied) was measured from the high fertilized Lolium sward under elevated pCO2. The magnitude of emissions varied throughout the year with 84% of the total emission from the elevated pCO2Lolium swards measured during the first two re‐growths (April–June 2001). This was associated with higher rainfall and soil water contents at this time of year. Trends in emissions varied between the first two re‐growths (April–June 2001) and the third, fourth and fifth re‐growths (late June–October 2000), with available soil NO3− and rainfall explaining 70%, and soil water content explaining 72% of the variability in N2O in these periods, respectively. Caution is therefore required when extrapolating from short‐term measurements to predict long‐term responses to global climate change. Our findings are of global significance as increases in atmospheric concentrations of CO2 may, depending on sward composition and fertilizer management, increase greenhouse gas emissions of N2O, thereby exacerbating the forcing effect of elevated CO2 on global climate. Our results suggest that when applying high rates of N fertilizer to grassland systems, Trifolium repens swards, or a greater component of Trifolium in mixed swards, may minimize the negative effect of continued increasing atmospheric CO2 concentrations on global warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.