Fluidized beds are conventional components of many industrial processes, such as coal gasification for energy generation and syngas production. Numerical simulations help to properly design and understand the complex multiphase flows occurring in these reactors. Two modeling approaches are usually adopted to simulate multiphase flows: the two fluids Eulerian-Eulerian model and the continuous/discrete Eulerian-Lagrangian model. Since fluidized beds account for an extremely large number of particles, tracking each of them could not assure to get results within a reasonable computational time. The Computational Particle-Fluid Dynamics (CPFD) approach, which belongs to the Eulerian-Lagrangian models class, groups together particles with similar key parameters (e.g. composition, size) into computational units (parcels). Parcel collisions are modeled by an isotropic solid stress function, depending on solid volume fraction. In this paper, the bubbling fluidized bed (BFB) upstream gasifier of the EU research infrastructure ZECOMIX (Zero Emissions of Carbon with Mixed technologies) has been simulated using a CPFD approach via Barracuda ® software. The effect of different fluidizing agent injection strategies on bed bubbling and mixing, for non-reacting cases, has been studied. The numerical results for a reacting case have been compared to the available experimental data, gathered during the coal gasification campaign. The model has proved to be very useful in the choice of the more efficient injection configuration that assures a more effective contact of the gas with the solid bed and a good bubbling fluidization regime, together with a satisfactory prediction of the outlet gas composition. The numerical approach has turned out to be robust and time-saving and allowed to dramatically reduce the computational cost with respect the classical two fluids Eulerian-Eulerian models.
The aim of this work is to analyze the behavior of the fuel flexible Ansaldo ARI100 T2 microgas turbine (MGT) combustor operated with mixtures having different H2, CH4, and CO2 concentrations. This combustor is going to be installed on an in-house modified Turbec T100 P MGT, which is originally equipped with a methane fired combustor. In a previous study, the combustor was simulated with a H2 enriched syngas, whose Wobbe index was within the limits imposed by the syngas supply system of an Ansaldo test bench. In this study, this constraint has been removed to gain a deeper understanding on how the fuel mixture properties (composition, heating value, and laminar flame speed) affect combustor performance. To this end, a series of Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) simulations have been carried out on the full-scale 3D geometry of the combustion chamber, at full and partial load (50%), evaluating for each case combustion efficiency as well as NOx and CO emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.