This paper shows that liquefaction (i.e. solubilization) of lignocellulosics in aqueous phase and in the absence of catalysts results in two general correlations. The extents of solubilization of both holocellulose and lignin are linearly related to overall conversion within the temperature range 150–270°C and up to conversions of 83%.
In the field of tissue engineering, a bioreactor is a valuable instrument that mimics a physiological environment to maintain live tissues in vitro. Although bioreactors are conceptually relatively simple, the vast majority of current bioreactors (commercial and custom-built) are not fully adapted to current research needs. Designing the optimal bioreactor requires a very thorough approach to a series of steps in the product development process. These four basic steps are: (1) identifying the needs and technical requirements, (2) defining and evaluating the related concepts, (3) designing the apparatus and drawing up the blueprints, and (4) building and validating the apparatus. Furthermore, the design has to be adapted to the specific purpose of the research and how the tissues will be used. In the emerging field of bioreactor research, roadmaps are needed to assist tissue engineering researchers as they embark on this process. The necessary multidisciplinary expertise covering micromechanical design, mechatronics, viscoelasticity, tissue culture, and human ergonomics is not necessarily available to all research teams. Therefore, the challenge of adapting and conducting each step in the product development process is significant. This paper details our proposal for a roadmap to accompany researchers in identifying their needs and technical requirements: step one in the product development process. Our roadmap proposal is set up in two phases. Phase 1 is based on the analysis of the bioreactor use cycle and phase 2 is based on the analysis of one specific and critical step in the use cycle: conducting stimulation and characterization protocols with the bioreactor. A meticulous approach to these two phases minimizes the risk of forgetting important requirements and strengthens the probability of acquiring or designing a high performance bioreactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.