The impact response of rubber and foam aluminum cushion spacers is simulated by ABAQUS finite element analysis software. It indicates that shape designed structures of rubber and foam aluminum buffer effectively in impact conditions. The rubber structure induces different deformation modes of the cushion spacer during the impact process and the deformation mode can be controlled. Elastic deformation of the rubber structure can accumulate energy. Rubber cushion endergonic and exergonic processes are reversible. It transforms kinetic energy into potential energy, prolongs loading time and releases the impact loading peak. Plastic deformation of foam aluminum can absorb energy and dissipation impacts kinetic energy. The process of aluminum dissipation energy is irreversible. Foam aluminum plastic dissipation energy is analyzed by a simplified mechanical theory. And corresponding impact experiments verify that the structured design rubber cushion spacer is valid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.