In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene ͑LDPE͒. LDPE films with 200 µm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.
This is the accepted version of the paper.This version of the publication may differ from the final published version. Permanent repository link ABSTRACT This position paper, prepared by the IEEE DEIS HVDC Cable Systems TechnicalCommittee, illustrates a protocol recommended for the measurement of space charges in full-size HVDC extruded cables during load cycle qualification tests (either prequalification load cycles or type test load cycles). The protocol accounts for the experimental practices of space charge measurements in the thick insulation of coaxial cables in terms of poling time, depolarization time, heating and cooling of specimens, as well as for the experience gained very recently from such kind of measurements performed in the framework of qualification tests relevant to ongoing HVDC cable system projects. The goal of the protocol is not checking the compliance with any maximum acceptable limit of either space charge or electric field. Rather, this protocol aims at assessing the variation of the electric field profile in the cable insulation wall during poling time at the beginning and at the end of load cycle qualification tests for full-size HVDC extruded cables. Indeed, in the design stage the electric field distributions are determined by the cable geometry and by temperature gradient in the insulation. Thus, the design is based on macroscopic parameters conductivity and permittivity and how they depend upon temperature. Any disturbance of the electric field due to space charge accumulation will only be revealed during space charge measurements either in as-manufactured state or in the aged state after load cycle qualification tests.
This position paper by the DEIS HVDC Cable Systems Technical Committee provides a review of existing diagnostic electrical and dielectric techniques for testing the insulation of polymeric extruded HVDC cable joints in the present Part 1. Here, the state of the art on the insulation of HVDC extruded cable system joints is covered with reference to types, design and testing techniques. This helps to identify routine tests as the first target for the onset of new testing procedures, AC-PD measurements as the readily-available measurement from manufacturers' practices for quality control of the insulation of accessories during routine tests and VHF/UHF wireless sensors as the best tool for performing such measurements on joints in the noisy factory environment. Thereby, a novel protocol for the measurement of partial discharges using AC voltages and VHF/UHF sensors, for quality control during routine tests on such joints, is derived in the next Part 2. This protocol is the main novelty of this investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.