The unified approach to optimal image interpolation problems presented provides a constructive procedure for finding explicit and closed-form optimal solutions to image interpolation problems when the type of interpolation can be either spatial or temporal-spatial. The unknown image is reconstructed from a finite set of sampled data in such a way that a mean-square error is minimized by first expressing the solution in terms of the reproducing kernel of a related Hilbert space, and then constructing this kernel using the fundamental solution of an induced linear partial differential equation, or the Green's function of the corresponding self-adjoint operator. It is proved that in most cases, closed-form fundamental solutions (or Green's functions) for the corresponding linear partial differential operators can be found in the general image reconstruction problem described by a first- or second-order linear partial differential operator. An efficient method for obtaining the corresponding closed-form fundamental solutions (or Green's functions) of the operators is presented. A computer simulation demonstrates the reconstruction procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.