Speech enhancement is required to enhance the quality of speech corrupted by the background noise and can be used in many applications such as hearing aids, mobile communication etc. In this paper a speech enhancement method is presented in which first Autoregressive (AR) model is applied for the noisy speech signal to find the speech parameters and then Hidden Markov model is applied to model those parameters. Later, the sparsity is encouraged into the model by adding the regularization parameter. The objective results for the proposed method and Wiener filter are compared. Speech quality in non-stationary noise conditions is observed through listening. The average loglikelihood score is obtained for different noises and observed that the performance is improved compared to the reference methods. KeywordsSpeech enhancement, non-stationary noise, sparse autoregressive hidden markov model (SARHMM).
The objective is to model the dominating speakerspecific source in the time-domain at different levels, namely, Subsegmental, segmental and supra-segmental. The speaker-specific source information contained in the LP residual. Hence, LP residual contains different speaker-specific information at different levels. At each level features are extracted using proposed method called Hidden Markov models (HMM) and it is compared with existing Gaussian Mixture model (GMM). The experimental results demonstrates that the performance of Subsegmental level is more than the other two levels. However, the evidences from all the three levels of processing seem to be different and combine well to provide improved performance than the state-of -art speaker recognition system and demonstrating different speaker information captured at each level of processing. Finally, the combined evidence from all the three levels of processing together with vocal tract information further improves the speaker recognition performance. Experiments were conducted on TIMIT database using Gaussian Mixture Models (GMM's) and Hidden Markov models (HMM's). Comparing both results the proposed model HMM is better than the existing model GMM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.