Cu2O is a promising p-type semiconductor for low-cost photovoltaics and transparent optoelectronics. However, low-cost and low-temperature fabrication of Cu2O films with good transport properties remains challenging, thus limiting their widespread adoption in devices. Here, we report Cu2O thin films of 20–80 nm thickness with hole mobility up to 92 cm2V−1s−1 using atmospheric-pressure spatial atomic layer deposition at temperatures below 260 °C, from a copper (I) hexafluoro-2,4-pentanedionate cyclooctadiene precursor. Raman spectroscopy indicates the presence of copper split vacancies and shows that the high hole mobility can be correlated to a low concentration of shallow acceptor defects. The optical bandgap of deposited films can be tuned between 2.08 eV and 2.5 eV, depending on the deposition temperature. All-oxide semitransparent Cu2O/ZnO solar harvesters are fabricated, showing efficiency values comparable to devices that incorporate much thicker Cu2O layers. Our work provides a promising approach towards cost-efficient, all-oxide solar harvesters, and for other (opto)electronic devices.
Recent research focuses on finding alternative materials and fabrication techniques to replace traditional (p) and (n) doped hydrogenated amorphous silicon (a-Si:H) to reduce cost and boost the efficiency of Silicon...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.