This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO2 preparation demonstrated that nano-PbO2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO2 particles. Gravure printing of nano-PbO2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO2 should pave the way to promising applications in electrochemical and sensor fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.