Flywheel energy storage systems (FESSs) improve the quality of the electric power delivered by wind generators, and help these generators contributing to the ancillary services. Presently, FESSs containing a flux-oriented controlled induction machine (IM) are mainly considered for this kind of application. The paper proposes the direct torque control (DTC) for an IM-based FESS associated to a variable-speed wind generator, and proves through simulation and experimental results that it could be a better alternative. This DTC application entails two specific aspects: 1) the IM must operate in the flux-weakening region, and 2) it must shift quickly and repeatedly between motoring and generating operation modes. DTC improvement for increasing the FESS efficiency, when it operates at small power values, is discussed. Some aspects concerning the flywheel design and the choice of the filter used in the FESS supervisor are also addressed.
Index Terms-DC-linkvoltage regulation, direct torque control (DTC), flywheel energy storage, flux-oriented controlled (FOC), induction machine (IM), power flow supervision, variable-speed wind generator (VSWG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.