OPENRosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.
We have isolated and sequenced 52 microsatellites or simple sequence repeats (SSRs) from nearly 60 positive clones obtained from two 'Frantoio' olive genomic libraries enriched in (AC/GT) and (AG/CT) repeats, respectively. The repeat-containing fragments obtained from genomic DNA restricted with Tsp509I were separated using a biotinylated probe bound to streptavidin-coated paramagnetic beads. Fragments were then cloned into lambda ZAPII vector and sequenced. Thirty of the 36 primer pairs which gave correct re-amplification in the source genome were used to assay the polymorphism of 12 olive cultivars, namely four well-known cultivars ('Coratina', 'Frantoio', 'Leccino', 'Pendolino') and eight ancient cultivars grown locally near Lake Garda ('Casaliva', 'Favarol', 'Fort', 'Grignan', 'Less', 'Raza', 'Rossanel', 'Trep'). The local cultivars were each re- presented by two to four long-lived individuals. The analysis was carried out using (33)P-labelled primers and 6% polyacrylamide sequencing gels. All except two microsatellites showed polymorphism, the number of alleles varying from 1 to 5. The average genetic diversity ( H) was 0.55. The power of discrimination ( PD) was 0.60. All cultivars, including the local ones, were easily separated from each other. Variations in the SSR pattern were observed among individual plants of the same cultivar in four out of the eight local cultivars analysed. Several primer pairs (17%) amplified more than one locus.
A collection of 1005 grapevine accessions was genotyped at 34 microsatellite loci (SSR) with the aim of analysing genetic diversity and exploring parentages. The comparison of molecular profiles revealed 200 groups of synonymy. The removal of perfect synonyms reduced the database to 745 unique genotypes, on which population genetic parameters were calculated. The analysis of kinship uncovered 74 complete pedigrees, with both parents identified. Many of these parentages were not previously known and are of considerable historical interest, e.g. Chenin blanc (Sauvignon × Traminer rot), Covè (Harslevelu selfed), Incrocio Manzoni 2-14 and 2-15 (Cabernet franc × Prosecco), Lagrein (Schiava gentile × Teroldego), Malvasia nera of Bolzano (Perera × Schiava gentile), Manzoni moscato (Raboso veronese × Moscato d'Amburgo), Moscato violetto (Moscato bianco × Duraguzza), Muscat of Alexandria (Muscat blanc à petit grain × Axina de tres bias) and others. Statistical robustness of unexpected pedigrees was reinforced with the analysis of an additional 7-30 SSRs. Grouping the accessions by profile resulted in a weak correlation with their geographical origin and/or current area of cultivation, revealing a large admixture of local varieties with those most widely cultivated, as a result of ancient commerce and population flow. The SSRs with tri- to penta-nucleotide repeats adopted for the present study showed a great capacity for discriminating amongst accessions, with probabilities of identity by chance as low as 1.45 × 10(-27) and 9.35 × 10(-12) for unrelated and full sib individuals, respectively. A database of allele frequencies and SSR profiles of 32 reference cultivars are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.