This paper presents the key observations and conclusions from the evaluation of an innovative "loose-fit" composite, post-tensioned concrete wing-girder bridge proposed for an elevated interstate highway expansion in an urban environment. The evaluation program included both testing to destruction of a 1/2-scale model of a partial span as well as construction monitoring and field testing at service load levels of a full-scale prototype two-span bridge. Results of both construction measurements and loading tests were compared with analytical predictions. Laboratory tests showed the composite behavior of the wing-girder joint to be fully effective and a high level of load transfer between wings to be present. Recommendations for modification of the prototype design are made to improve constructibility, durability, structural performance, and economy. Key words: box girder, bridge, post-tensioned, prestressed concrete, reinforcement, stresses, temperature, tendons.
Following the crash of a Mirage III-0 aircraft (apparently caused by engine failure), a small crack was detected in a bolt hole in the wing main spar (AU4SG aluminum alloy). Because this area was considered to be critical to aircraft safety and similar cracking was found in other spars in service, the Royal Australian Air Force requested that the crack growth rate during service be determined. The loading history of the aircraft was made available in the form of flight by-flight records of the counts from the vertical accelerometer sensors fitted to the airframe and a series of “overstress” events recorded during the life of the aircraft. The bolt hole was examined by eddy current testing, visual examination, high-powered light microscope, and scanning electron microscope. Simulation tests were also conducted. The use of simulation specimens permitted actual crack growth rate data to be determined for the configuration of interest.
A crack was detected in one arm of the right-hand horizontal brace of the nose landing gear shock strut from a large military aircraft. The shock strut was manufactured from a 7049 aluminum alloy forging in the shape of a delta. A laboratory investigation was conducted to determine the cause of failure. It was concluded that the arm failed because of the presence of an initial defect that led to the initiation of fatigue cracking. The fatigue cracking grew in service until the part failed by overload. The initial defect was probably caused during manufacture. Fleet-wide inspection of the struts was recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.