In this work, we tackle the challenge of quantitative estimation of reservoir dynamic property variations during a period of production, directly from four‐dimensional seismic data in the amplitude domain. We employ a deep neural network to invert four‐dimensional seismic amplitude maps to the simultaneous changes in pressure, water and gas saturations. The method is applied to a real field data case, where, as is common in such applications, the data measured at the wells are insufficient for properly training deep neural networks, thus, the network is trained on synthetic data. Training on synthetic data offers much freedom in designing a training dataset, therefore, it is important to understand the impact of the data distribution on the inversion results. To define the best way to construct a synthetic training dataset, we perform a study on four different approaches to populating the training set making remarks on data sizes, network generality and the impact of physics‐based constraints. Using the results of a reservoir simulation model to populate our training datasets, we demonstrate the benefits of restricting training samples to fluid flow consistent combinations in the dynamic reservoir property domain. With this the network learns the physical correlations present in the training set, incorporating this information into the inference process, which allows it to make inferences on properties to which the seismic data are most uncertain. Additionally, we demonstrate the importance of applying regularization techniques such as adding noise to the synthetic data for training and show a possibility of estimating uncertainties in the inversion results by training multiple networks.
In this work we present a deep neural network inversion on map-based 4D seismic data for pressure and saturation. We present a novel neural network architecture that trains on synthetic data and provides insights into observed field seismic. The network explicitly includes AVO gradient calculation within the network as physical knowledge to stabilize pressure and saturation changes separation. We apply the method to Schiehallion field data and go on to compare the results to Bayesian inversion results. Despite not using convolutional neural networks for spatial information, we produce maps with good signal to noise ratio and coherency.
In this work we present a deep neural network inversion on map-based 4D seismic data for pressure and saturation. We present a novel neural network architecture that trains on synthetic data and provides insights into observed field seismic. The network explicitly includes AVO gradient calculation within the network as physical knowledge to stabilize pressure and saturation changes separation. We apply the method to Schiehallion field data and go on to compare the results to Bayesian inversion results. Despite not using convolutional neural networks for spatial information, we produce maps with good signal to noise ratio and coherency.
Geoscience data often have to rely on strong priors in the face of uncertainty. Additionally, we often try to detect or model anomalous sparse data that can appear as an outlier in machine learning models. These are classic examples of imbalanced learning. Approaching these problems can benefit from including prior information from physics models or transforming data to a beneficial domain. We show an example of including physical information in the architecture of a neural network as prior information. We go on to present noise injection at training time to successfully transfer the network from synthetic data to field data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.