A newly developed state-of-the-art snow water equivalent (SWE) reanalysis dataset over the Sierra Nevada (United States) based on the assimilation of remotely sensed fractional snow-covered area data over the Landsat 5–8 record (1985–2015) is presented. The method (fully Bayesian), resolution (daily and 90 m), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The reanalysis dataset was used to characterize the peak SWE climatology to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years. The pixel-wise peak SWE volume over the domain was found to be 20.0 km3 on average with a range of 4.0–40.6 km3. The ongoing drought in California contains the two lowest snowpack years (water years 2014 and 2015) and three of the four driest years over the examined record. It was found that the basin-average peak SWE, while underestimating the total water storage in snowpack over the year, accurately captures the interannual variability in stored snowpack water. However, the results showed that the assumption that 1 April SWE is representative of the peak SWE can lead to significant underestimation of basin-average peak SWE both on an average (21% across all basins) and on an interannual basis (up to 98% across all basin years).
Abstract. We introduce the first catchment dataset for large sample studies in Chile. This dataset includes 516 catchments; it covers particularly wide latitude (17.8 to 55.0∘ S) and elevation (0 to 6993 m a.s.l.) ranges, and it relies on multiple data sources (including ground data, remote-sensed products and reanalyses) to characterise the hydroclimatic conditions and landscape of a region where in situ measurements are scarce. For each catchment, the dataset provides boundaries, daily streamflow records and basin-averaged daily time series of precipitation (from one national and three global datasets), maximum, minimum and mean temperatures, potential evapotranspiration (PET; from two datasets), and snow water equivalent. We calculated hydro-climatological indices using these time series, and leveraged diverse data sources to extract topographic, geological and land cover features. Relying on publicly available reservoirs and water rights data for the country, we estimated the degree of anthropic intervention within the catchments. To facilitate the use of this dataset and promote common standards in large sample studies, we computed most catchment attributes introduced by Addor et al. (2017) in their Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) dataset, and added several others. We used the dataset presented here (named CAMELS-CL) to characterise regional variations in hydroclimatic conditions over Chile and to explore how basin behaviour is influenced by catchment attributes and water extractions. Further, CAMELS-CL enabled us to analyse biases and uncertainties in basin-wide precipitation and PET. The characterisation of catchment water balances revealed large discrepancies between precipitation products in arid regions and a systematic precipitation underestimation in headwater mountain catchments (high elevations and steep slopes) over humid regions. We evaluated PET products based on ground data and found a fairly good performance of both products in humid regions (r>0.91) and lower correlation (r<0.76) in hyper-arid regions. Further, the satellite-based PET showed a consistent overestimation of observation-based PET. Finally, we explored local anomalies in catchment response by analysing the relationship between hydrological signatures and an attribute characterising the level of anthropic interventions. We showed that larger anthropic interventions are correlated with lower than normal annual flows, runoff ratios, elasticity of runoff with respect to precipitation, and flashiness of runoff, especially in arid catchments. CAMELS-CL provides unprecedented information on catchments in a region largely underrepresented in large sample studies. This effort is part of an international initiative to create multi-national large sample datasets freely available for the community. CAMELS-CL can be visualised from http://camels.cr2.cl and downloaded from https://doi.pangaea.de/10.1594/PANGAEA.894885.
This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%-82% and 60%-68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBS RMSE was ;54% of that seen in the EnBS, while for snow courses the PBS RMSE was ;79% of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.
We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.