The myc family of proto-oncogenes is believed to be involved in the establishment of many types of human malignancy. The members of this family have been shown to function as transcription factors, and through a designated target sequence bring about continued cell-cycle progression, cellular immortalization and blockages to differentiation in many lineages. However, while much of the recent work focusing on the c-myc oncogene has provided some very important advances, it has also brought to light a large amount of conflicting data as to the mechanism of action of the gene product. In this regard, it has now been shown that c-myc is effective in transcriptional repression as well as transcriptional activation and, perhaps more paradoxically, that it has a role in programmed cell death (apoptosis) as well as in processes of cell-cycle progression. In addition, particular interest has surrounded the distinct roles of the two alternative translation products of the c-myc gene, c-Myc 1 and c-Myc 2. The intriguing observation that the ratio of c-Myc 1 to c-Myc 2 increases markedly upon cellular quiescence led to the discovery that the enforced expression of the two proteins individually showed that c-Myc 2 stimulates cell growth, whereas c-Myc 1 appears to be growth suppressing. Clearly, the disparities in the activities of c-Myc, together with the consistent occurrence of mutations of c-myc in human malignancies, means that, although reaching an understanding of the functions of the myc gene family might not be simple, it remains well worthy of pursuit.
A cDNA library has been prepared from mouse embryo small RNAs and screened for the presence of clones complementary to the highly abundant cytoplasmic 7S RNA. One clone (pA6) was selected which hybridized exclusively with 7S RNA on a Northern blot prepared from cytoplasmic RNA run on high resolution polyacrylamide/urea gels. Sequence analysis of this clone has shown that at least 65 nucleotides at the 5' end of 7S RNA are extensively homologous with the highly repeated mouse B1 family. Heterologous hybridisations between the cloned mouse 7S sequence and RNAs prepared from rat, human and chick cells have shown that the non-B1 part of the 7S RNA molecule has been highly conserved during recent eucaryotic evolution. There are multiple copies of 7S RNA genes in the genomes of mouse, human, rat and chick cells, but substantial differences exist in copy number and genomic organisation in these organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.