Source-to-target simulation of an accelerator provides a thorough check on the consistency of the design as well as a detailed understanding of the beam behavior. Issues such as envelope mismatch and emittance growth can be examined in a self-consistent manner, including the details of accelerator transitions, long-term transport, and longitudinal compression. The large range in scales, from centimeter-scale transverse beam size and applied field scale-length, to meter-scale beam length, to kilometer-scale accelerator length, poses a significant computational challenge. The ever-increasing computational power that is becoming available through massively parallel computers is making such simulation realizable. This paper discusses the progress toward sourceto-target simulation using the WARP particle-in-cell code. Representative examples are shown, including 3-D, long-term transport simulations of Integrated Research Experiment (IRE) scale accelerators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.