Omega-3 (ω-3) fatty acids have been extensively studied for primary and secondary prevention of cardiovascular health, but their ability to modulate HDL functionality remains unclear. The purpose of this study was to investigate the role of ω-3, rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA), on HDL functionality. For that, 147 individuals with high cardiovascular risk were randomized in ω-3 (1 g of fish oil each - 370 mg of EPA and 230 mg of DHA, 3 times per day total EPA+DHA = 1,800 mg) or ω-6 groups (1 g of sunflower oil each - 760 mg of linoleic acid, 3 times per day; total linoleic acid = 2,280 mg). Fasting blood samples were collected at baseline time and after 8 weeks of follow-up and, and the lipid profile and glucose metabolism were evaluated from plasma. From HDL, the fatty acid profile, apolipoproteins (Apo AI, CII and CIII), paraoxonase-1 (PON1), cholesteryl ester transfer protein (CETP), subfractions and antioxidant activity were investigated. Omega-3 improved large HDL (HDL = 28.7%) and reduced small HDL (HDL10 = −10.6%) and the non-esterified fatty acids in HDL (NEFAs-HDL) level (−16.2%). A significant reduction in CETP activity was observed in the ω-3group (Δ ω-6 = 3.60 pmol/ul/h and Δ ω-3 = −1.99 pmol/ul/h; p = 0.044). The antioxidant capacity estimated by Lag time analysis did not change after the ω-3intervention. Changes in PON1 and Apo AI were inversely associated with increased incorporation of EPA (AOR = 0.446; IC = 0.200–0.994) and DHA (AOR = 0.351; IC = 0.150–0.821) in HDL, respectively. Cardioprotective profile obtained by pooled fatty acids analysis was related to a decrease in Apo CIII (r = −0.638; p = 0.002) and CETP (r = −0.341; p = 0.012) and an increase in Apo CII (r = 0.448; p = 0.042) and PON1 (r = 0.388; p = 0.003). In conclusion, omega-3 was effective in the reduction of cardiovascular risk associated with HDL functionality by size improvement and changes in its lipid, antioxidant and enzyme composition.
Background Atherogenic diabetes is associated with an increased cardiovascular risk and mortality in diabetic individuals; however, the impact of insulin resistance (IR) in lipid metabolism in preclinical stages is generally underreported. For that, we evaluated the capacity of IR to predict an atherogenic lipid subfraction profile. Methods Complete clinical evaluation and biochemical analysis (lipid, glucose profile, LDL, and HDL subfractions and LDL phenotype and size) were performed in 181 patients. The impact of IR as a predictor of atherogenic lipoproteins was tested by logistic regression analysis in raw and adjusted models. Results HDL-C and Apo AI were significantly lower in individuals with IR. Individuals with IR had a higher percentage of small HDL particles, lower percentage in the larger ones, and reduced frequency of phenotype A (IR = 62%; non-IR = 83%). IR individuals had reduced probability to have large HDL (OR = 0.213; CI = 0.999–0.457) and had twice more chances to show increased small HDL (OR = 2.486; CI = 1.341–7.051). IR was a significant predictor of small LDL (OR = 3.075; CI = 1.341–7.051) and atherogenic phenotype (OR = 3.176; CI = 1.469–6.867). Conclusion IR, previously DM2 diagnosis, is a strong predictor of quantitative and qualitative features of lipoproteins directly associated with an increased atherogenic risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.