Optical polarization processes in a parallel-sided glass element used in a Faraday rotation current sensor have been considered. In such sensors the path length necessary to produce sufficient rotation of the plane of polarization is produced by a multiplicity of reflections within the glass element. It is shown that such reflections induce ellipticity of polarization and that this affects the current-sensing performance of the sensor. Two reflection cases, corresponding to total internal reflections at a glass-air interface and reflections by aluminium-coated surfaces, are considered. The latter are shown to produce higher optical attenuation but a lower degree of elliptical polarization. The implications of the induced elliptical polarization in relation to chromatically modulated polychromatic light are considered. It is shown that the resolution of the Faraday sensing is improved by minimizing the ellipticity of the polarization with the aluminium-coated reflections. However a greater dynamic range and signal strength may be achievable with the total internal reflection element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.