This article summarizes the main discussions at a meeting on the biological, social and clinical bases of drug addiction focused on contemporary topics in drug dependence. Four main domains are surveyed, reflecting the structure of the meeting: psychological and pharmacological factors; neurobiological substrates; risk factors (including a consideration of vulnerability from an environmental and genetic perspective); and clinical treatment. Among the topics discussed were tolerance, sensitization, withdrawal, craving and relapse; mechanisms of reinforcing actions of drugs at the behavioural, cognitive and neural levels; the role of subjective factors in drug dependence; approaches to the behavioural and molecular genetics of drug dependence; the use of functional neuroimaging; pharmaceutical and psychosocial strategies for treatment; epidemiological and sociological aspects of drug dependence. The survey takes into account the considerable disagreements and controversies arising from the discussions, but also reaches a degree of consensus in certain areas.
Several experiments investigated the involvement of D1 and D2 dopamine receptors in the ventral striatum in the control over behaviour by a conditioned reinforcer using an acquisition of new response procedure. Intra-accumbens infusion of either the D1 receptor antagonist, SCH 23390, or the D2 receptor antagonist, raclopride, completely blocked the potentiative effects of intra-accumbens d-amphetamine on responding with conditioned reinforcement and reduced responding to control levels. SCH 23390 was more potent than raclopride. At higher doses in the absence of d-amphetamine, both antagonists also blocked the preference for responding on the lever producing the conditioned reinforcer. Intra-accumbens infusions of either the D1 receptor agonist, SKF 38393, or the D2/3 receptor agonist, LY 171555 (quinpirole), selectively potentiated responding on the lever producing the conditioned reinforcer. Various combined infusions of the D1 and D2 agonists in specific low doses had additive, but not synergistic, effects on responding with conditioned reinforcement. None of the drugs affected the drinking of water in deprived subjects when infused intra-accumbens. These results suggest that both D1 and D2 receptors in the nucleus accumbens are involved in mediating the effects of dopamine in potentiating the control over behaviour by conditioned reinforcers.
Dopaminergic cell bodies located within the ventral mesencephalon innervate the amygdaloid complex, a region critically involved in the attribution of affective significance to environmental stimuli. Recently, we have shown that post-session intra-amygdala administration of a D3 dopamine receptor agonist enhances selectively the acquisition of an appetitive conditioned response. In the present study, we have investigated the potential involvement of the central nucleus and the basolateral nuclei of the amygdala in mediating this effect. Thus, rats were trained to associate an arbitrary stimulus (CS+) with the availability of 10% sucrose reward. Post-session infusions of the D3 receptor-preferring agonist, R(+) 7-OH-DPAT, were made into either the central nucleus or basolateral nuclei. Acquisition of a conditioned approach response was enhanced by R(+) 7-OH-DPAT infusions within the central nucleus, but not within the basolateral nuclei. Drug infusions into either region failed to affect approach behaviour elicited by presentation of a control stimulus (CS-), explicitly unpaired with sucrose reward. The effects of pre-test infusions of R(+) 7-OH-DPAT on the instrumental properties of the stimuli were then determined. Rats were presented with two novel levers, depression of one lever resulted in presentation of the CS+, while presentation of the CS- was contingent upon depression of the other lever. Rates of response upon each lever as well as the ability of the conditioned stimuli subsequently to elicit conditioned approach behaviour were recorded. Data revealed a double dissociation of the effects of R(+) 7-OH-DPAT on the expression of the Pavlovian and instrumental properties of the reward-related stimulus. Thus, within the central nucleus R(+) 7-OH-DPAT dose-dependently attenuated expression of the conditioned approach response, but had no effect upon instrumental responding maintained by the conditioned reward. In contrast, within the basolateral nuclei, R(+) 7-OH-DPAT had no effect upon expression of conditioned approach behaviour, but abolished selectively the ability of the reward-associated stimulus to support the acquisition of a novel instrumental response. Hence, these data indicate that distinct regions of the amygdaloid complex process distinct aspects of conditioned appetitive behaviours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.