No abstract
Multichannel seismic reflection data have been analyzed from an area of clear bottom simulating reflectors (BSRs) on the northern Cascadia subduction zone margin off Vancouver Island. The reflector at a depth of about 300 m subbottom is interpreted to represent the base of a layer of methane hydrate or clathrate. The shallow water depth of 1300 m and the 3600‐m‐long hydrophone array have allowed BSR amplitude‐versus‐offset and high‐resolution velocity analysis, as well as modelling of vertical incidence data. The results of all three types of analysis can be best explained by a 10 to 30‐m‐thick high‐velocity layer located immediately above the BSR about 300 m below the seafloor, having a sharp base and transitional top. In the layer, about one third of the sediment pore spaces must be filled with hydrate “ice”. There is no seismically detectable free gas beneath the BSRs. These results put important constraints on models for the distribution and formation of BSR hydrate.
Subduction of the Nazca plate beneath the Ecuador‐Colombia margin has produced four megathrust earthquakes during the last century. The 500‐km‐long rupture zone of the 1906 (Mw = 8.8) event was partially reactivated by three thrust events, in 1942 (Mw = 7.8), 1958 (Mw = 7.7), and 1979 (Mw = 8.2), whose rupture zones abut one another. Multichannel seismic reflection and bathymetric data acquired during the SISTEUR cruise show evidence that the margin wedge is segmented by transverse crustal faults that potentially correlate with the limits of the earthquake coseismic slip zones. The Paleogene‐Neogene Jama Quininde and Esmeraldas crustal faults define a ∼200‐km‐long margin crustal block that coincides with the 1942 earthquake rupture zone. Subduction of the buoyant Carnegie Ridge is inferred to partially lock the plate interface along central Ecuador. However, coseismic slip during the 1942 and 1906 earthquakes may have terminated against the subducted northern flank of the ridge. We report on a newly identified Manglares crustal fault that cuts transversally through the margin wedge and correlates with the limit between the 1958 and 1979 rupture zones. During the earthquake cycle the fault is associated with high‐stress concentration on the plate interface. An outer basement high, which bounds the margin seaward of the 1958 rupture zone, may act as a deformable buttress to seaward propagation of coseismic slip along a megathrust splay fault. Coseismic uplift of the basement high is interpreted as the cause for the 1958 tsunami. We propose a model of weak transverse faults which reduce coupling between adjacent margin segments, together with a splay fault and an asperity along the plate interface as controlling the seismogenic rupture of the 1958 earthquake.
Analysis of the Lithoprobe Deep Probe and Southern Alberta Refraction Experiment data sets, focusing on the region between Deep Probe shots 43 and 55, has resulted in a continental-scale velocity structural model of the lithosphere of platformal western Laurentia reaching depths of ~150 km. Three major lithospheric blocks were investigated: (i) the Hearne Province, a typical continental Archean cratonic province lying beneath the Western Canada Sedimentary Basin; (ii) the Wyoming Province, an even older block of Phanerozoic-modified Archean crust with an enigmatic lower lithosphere; and (iii) the YavapaiMazatzal Province, Proterozoic terranes underlying the Colorado Plateau and Southern Rocky Mountains. In this study, the northern two of these regions are investigated with a modified ray-theoretical traveltime inversion routine that respects the spherical geometry of the Earth. The resulting crustal velocity structure, combined with supporting geological and geophysical data, reveals that the Medicine Hat block (MHB), lying between the Hearne and Wyoming provinces, is a third independent Archean crustal block. The subcrustal lithosphere along the profile is homogeneous in velocity structure, but two significant northward-dipping reflectors are apparent and interpreted as relic subduction zones associated with sutures between the three Archean blocks. The Hearne crust is typical of an Archean shield or platform both in its thickness of 3450 km and its seismic velocity structure. The crust of the Archean MHB and Wyoming Province, which ranges in thickness from 49 to 60 km, includes a 1030 km thick high-velocity layer, interpreted to be Proterozoic in age. Such a feature is unexpected beneath Archean crustal provinces, but if the region is considered to be the remanent marginal portion of a larger Archean continent, then the interpreted Proterozoic underplating and lack of an Archean lithospheric root can be explained. The variable topography along the reflective upper and lower boundaries of this layer, especially within the MHB, suggests considerable variability in its emplacement and subsequent tectonic history.
Seismic reflection profiles across many continental margins have imaged bottom-simulating reflectors (BSRs) parallel to the seabed; these are often interpreted as the base of a zone in which methane hydrate "ice" is stable. Waveform inversion of seismic reflection data can be used to estimate from seismic data worldwide the velocity structure of a BSR and its thickness. A test of this method at a drill site of the Ocean Drilling Program predicts that sediment pores beneath the BSR contain free methane for approximately 30 meters. The hydrate and underlying gas represent a large global reservoir of methane, which may have economic importance and may influence global climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.