Aims. Nova Cyg 2006 has been intensively observed throughout its full outburst. We investigate the energetics and evolution of the central source and of the expanding ejecta, their chemical abundances and ionization structure, and the formation of dust. Methods. We recorded low, medium, and/or high-resolution spectra (calibrated into accurate absolute fluxes) on 39 nights, along with 2353 photometric UBVR c I c measures on 313 nights, and complemented them with IR data from the literature. Results. The nova displayed initially the normal photometric and spectroscopic evolution of a fast nova of the FeII-type. Premaximum, principal, diffuse-enhanced, and Orion absorption systems developed in a normal way. After the initial outburst, the nova progressively slowed its fading pace until the decline reversed and a second maximum was reached (eight months later), accompanied by large spectroscopic changes. Following the rapid decline from second maximum, the nova finally entered the nebular phase and formed optically thin dust. We performed a photo-ionization analysis of the emission-line spectrum during the nebular phase, which showed a strong enrichment of the ejecta in nitrogen and oxygen, and none in neon, in agreement with theoretical predictions for the estimated 1.0 M white dwarf in Nova Cyg 2006. The similarities with the poorly investigated V1493 Nova Aql 1999a are discussed.
The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d'Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification's accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified.
Land-cover/land-use thematic maps are a major need in urban and country planning. This paper demonstrates the capabilities of Object Based Image Analysis in multi-scale thematic classification of a complex sub-urban landscape with simultaneous presence of agricultural, residential and industrial areas using pan-sharpened very high resolution satellite imagery. The classification process was carried out step by step through the creation of different hierarchical segmentation levels and exploiting spectral, geometric and relational features. The framework returned a detailed land-cover/land-use map with a Cohen's kappa coefficient of 0.84 and an overall accuracy of 85%.
Analysis of surface coseismic displacement has already been obtained for the 6 April 2009 L'Aquila (central Italy) earthquake from differential interferometric synthetic aperture radar (DInSAR) data. Working jointly on ascending and descending DInSAR data makes for a step forward with respect to published preliminary estimates: we process data in order to retrieve a continuous displacement pattern, both in the vertical and horizontal directions, the latter being limited to the eastward component because of the low sensibility of the SAR images used to resolve northward motion. Our analysis provides new insights on the horizontal component of displacement, obtaining a clear picture of eastward displacement patterns over the epicentral area. This result is noteworthy, as until now little information has been available on horizontal displacement following normal‐fault events in the central Apennines (Umbria‐Marche, 1997, and L'Aquila, 2009), given the lack of dense GPS networks, the only available source of horizontal displacement data in this area. Inverted fault characteristics from such data also show noteworthy differences compared to previous studies, localizing the Paganica fault as the causative fault for the earthquake.
S U M M A R YA key issue in our understanding of the earthquake cycle and seismic hazard is the behaviour of an active fault during the interseismic phase. Locked and creeping faults represent two end-members of mechanical behaviours that are given two extreme rupturing hazard levels, that is, high and low, respectively. Geophysical and space geodetic analyses are carried out over the Pollino Range, an extensional environment within the Africa-Eurasia plate boundary, to disclose the behaviour of the long-lasting quiescent Castrovillari normal fault. Fault trenching evidenced at least four large earthquakes (6.5-7.0 M w ) in the past and an elapsed time of 1200 yr since the last event. Inversion of Differential Interferometric Synthetic Aperture Radar and Global Positioning System over a decade shows fast creeping at all depths of the fault plane. The velocity-strengthening creeping zone reaches maximum rates 20 mm yr −1 against an average rate of about 3-9 mm yr −1 . It limits the southern-weakening locked part of the fault. An essential condition for the generation of a large earthquake on the Castrovillari fault, as has occurred in the past, is a rupture through the velocity-strengthening zone. The Castrovillari fault yields the best evidence for being both a strong and weak fault during its earthquake cycle. Creeping at rates faster than its tectonically driven ones, it must thus consist of a mix of unstable and conditionally stable patches ready to sustain a sizeable earthquake. Quantifying and mapping the slip rate over the fault plane is important because they influence fault moment budget estimate and helps to constrain constitutive laws of fault zones. Aseismic slip also redistributes stress in the crust, thereby affecting the locations of future earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.