The study makes use of polynomial chaos expansions to compute Sobol' indices within the frame of a global sensitivity analysis of hydrodispersive parameters in a simplified vertical cross-section of a segment of the subsurface of the Paris Basin. Applying conservative ranges, the uncertainty in 78 input variables is propagated upon the mean lifetime expectancy of water molecules departing from a specific location within a highly confining layer situated in the middle of the model domain. Lifetime expectancy is a hydrogeological performance measure pertinent to safety analysis with respect to subsurface contaminants, such as radionuclides. The sensitivity analysis indicates that the variability in the mean lifetime expectancy can be sufficiently explained by the uncertainty in the petrofacies, i.e. the sets of porosity and hydraulic conductivity, of only a few layers of the model. The obtained results provide guidance regarding the uncertainty modeling in future investigations employing detailed numerical models of the subsurface * Corresponding author, e-mail: konakli@ibk.baug.ethz.ch of the Paris Basin. Moreover, the study demonstrates the high efficiency of sparse polynomial chaos expansions in computing Sobol' indices for high-dimensional models.
Sensitivity analysis is an essential tool in the development of robust models for engineering, physical sciences, economics and policymaking, but typically requires running the model a large number of times in order to estimate sensitivity measures. While statistical emulators allow sensitivity analysis even on complex models, they only perform well with a moderately low number of model inputs: in higher dimensional problems they tend to require a restrictively high number of model runs unless the model is relatively linear. Therefore, an open question is how to tackle sensitivity problems in higher dimensionalities, at very low sample sizes. This article examines the relative performance of four sampling-based measures which can be used in such high-dimensional nonlinear problems. The measures tested are the Sobol' total sensitivity indices, the absolute mean of elementary effects, a derivative-based global sensitivity measure, and a modified derivative-based measure. Performance is assessed in a 'screening' context, by assessing the ability of each measure to identify influential and non-influential inputs on a wide variety of test functions at different dimensionalities. The results show that the best-performing measure in the screening context is dependent on the model or function, but derivative-based measures have a significant potential at low sample sizes that is currently not widely recognised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.