Background The application of artificial intelligence (AI) to whole slide images has the potential to improve research reliability and ultimately diagnostic efficiency and service capacity. Image annotation plays a key role in AI and digital pathology. However, the work‐streams required for tissue‐specific (skin) and immunostain‐specific annotation has not been extensively studied compared with the development of AI algorithms. Objectives The objective of this study is to develop a common workflow for annotating whole slide images of biopsies from inflammatory skin disease immunostained with a variety of epidermal and dermal markers prior to the development of the AI‐assisted analysis pipeline. Methods A total of 45 slides containing 3–5 sections each were scanned using Aperio AT2 slide scanner (Leica Biosystems). These slides were annotated by hand using a commonly used image analysis tool which resulted in more than 4000 images blocks. We used deep learning (DL) methodology to first sequentially segment (epidermis and upper dermis), with the exclusion of common artefacts and second to quantify the immunostained signal in those two compartments of skin biopsies and the ratio of positive cells. Results We validated two DL models using 10‐fold validation runs and by comparing to ground truth manually annotated data. The models achieved an average (global) accuracy of 95.0% for the segmentation of epidermis and dermis and 86.1% for the segmentation of positive/negative cells. Conclusions The application of two DL models in sequence facilitates accurate segmentation of epidermal and dermal structures, exclusion of common artefacts and enables the quantitative analysis of the immunostained signal. However, inaccurate annotation of the slides for training the DL model can decrease the accuracy of the output. Our open source code will facilitate further external validation across different immunostaining platforms and slide scanners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.