The growth and collapse of transient vapour cavities near a rigid boundary in the presence of buoyancy forces and an incident stagnation-point flow are modelled via a boundary-integral method. Bubble shapes, particle pathlines and pressure contours are used to illustrate the results of the numerical solutions. Migration of the collapsing bubble, and subsequent jet formation, may be directed either towards or away from the rigid boundary, depending on the relative magnitude of the physical parameters. For appropriate parameter ranges in stagnation-point flow, unusual ‘hour-glass’ shaped bubbles are formed towards the end of the collapse of the bubble. It is postulated that the final collapsed state of the bubble may be two toroidal bubbles/ring vortices of opposite circulation. For buoyant vapour cavities the Kelvin impulse is used to obtain criteria which determine the direction of migration and subsequent jet formation in the collapsing bubble.
Calculations of the growth and collapse of transient vapour cavities near a free surface when buoyancy forces may be important are made using the boundary-integral method described in Part 1. Bubble shapes, particle paths, pressure contours and centroid motion are used to illustrate the calculations. In the absence of buoyancy forces the bubble migrates away from the free surface during the collapse phase, yielding a liquid jet directed away from the free surface. When the bubble is sufficiently close to the free surface, the nonlinear response of the free surface produces a high-speed jet (‘spike’) that moves in the opposite direction to the liquid jet and, in so doing, produces a stagnation point in the fluid between the bubble and the free surface. For sufficiently large bubbles, buoyancy forces may be dominant, so that the bubble migrates towards the free surface with the resulting liquid jet in the same direction. The Kelvin impulse provides a reasonable estimate of the physical parameter space that determines the migratory behaviour of the collapsing bubbles.
A combination of known methods have been spliced together in order to calculate accurate vibrational energies and wavefunctions. The algorithm is based on the Rayleigh-Ritz variational procedure in which the trial wavefunction is a linear combination of configuration products of one-dimensional basis functions. The Hamiltonian is that due to Carney and Porter (1976). The kernel of the algorithm consists o( the one-dimensional basis functions, which are the finite element solutions of the associated one-dimensional problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.