Fish-eating birds can be exposed to levels of dietary methylmercury (MeHg) known or suspected to adversely affect normal behavior and reproduction, but little is known regarding Hg's subtle effects on the avian brain. In the current study, we explored relationships among Hg, Se, and neurochemical receptors and enzymes in two fish-eating birds--common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). In liver, both species demonstrated a wide range of total Hg (THg) concentrations, substantial demethylation of MeHg, and a co-accumulation of Hg and Se. In liver, there were molar excesses of Se over Hg up to about 50-60 microg/g THg, above which there was an approximate 1:1 molar ratio of Hg:Se in both species. However, in brain, bald eagles displayed a greater apparent ability to demethylate MeHg than common loons. There were molar excesses of Se over Hg in brains of bald eagles across the full range of THg concentrations, whereas common loons often had extreme molar excesses of Hg in their brains, with a higher proportion of THg remaining as MeHg compared with eagles. There were significant positive correlations between brain THg and muscarinic cholinergic receptor concentrations in both species studied; whereas significant negative correlations were observed between N-methyl-D-aspartic acid (NMDA) receptor levels and brain Hg concentration. There were no significant correlations between brain Se and neurochemical receptors or enzymes (cholinesterase and monoamine oxidase) in either species. Our findings suggest that there are significant differences between common loons and bald eagles with respect to cerebral metabolism and toxicodynamics of MeHg and Se. These interspecies differences may influence relative susceptibility to MeHg toxicity; however, neurochemical responses to Hg in both species were similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.