Electrons and holes confined in quantum dots define an excellent building block for quantum emergence, simulation, and computation. In order for quantum electronics to become practical, large numbers of quantum dots will be required, necessitating the fabrication of scaled structures such as linear and 2D arrays. Group IV semiconductors contain stable isotopes with zero nuclear spin and can thereby serve as excellent host for spins with long quantum coherence. Here we demonstrate group IV quantum dot arrays in silicon metal-oxide-semiconductor (SiMOS), strained silicon (Si/SiGe) and strained germanium (Ge/SiGe). We fabricate using a multi-layer technique to achieve tightly confined quantum dots and compare integration processes. While SiMOS can benefit from a larger temperature budget and Ge/SiGe can make ohmic contact to metals, the overlapping gate structure to define the quantum dots can be based on a nearly identical integration. We realize charge sensing in each platform, for the first time in Ge/SiGe, and demonstrate fully functional linear and two-dimensional arrays where all quantum dots can be depleted to the last charge state. In Si/SiGe, we tune a quintuple quantum dot using the N+1 method to simultaneously reach the few electron regime for each quantum dot. We compare capacitive cross talk and find it to be the smallest in SiMOS, relevant for the tuning of quantum dot arrays. These results constitute an excellent base for quantum computation with quantum dots and provide opportunities for each platform to be integrated with standard semiconductor manufacturing. * Corresponding Author: m.veldhorst@tudelft.nl arXiv:1909.06575v1 [cond-mat.mes-hall]
Full-scale quantum computers require the integration of millions of qubits, and the potential of using industrial semiconductor manufacturing to meet this need has driven the development of quantum computing in silicon quantum dots. However, fabrication has so far relied on electron-beam lithography and, with a few exceptions, conventional lift-off processes that suffer from low yield and poor uniformity. Here we report quantum dots that are hosted at a 28Si/28SiO2 interface and fabricated in a 300 mm semiconductor manufacturing facility using all-optical lithography and fully industrial processing. With this approach, we achieve nanoscale gate patterns with excellent yield. In the multi-electron regime, the quantum dots allow good tunnel barrier control—a crucial feature for fault-tolerant two-qubit gates. Single-spin qubit operation using magnetic resonance in the few-electron regime reveals relaxation times of over 1 s at 1 T and coherence times of over 3 ms.
We investigate the magnetic field and temperature dependence of the single-electron spin lifetime in silicon quantum dots and find a lifetime of 2.8 ms at a temperature of 1.1 K. We develop a model based on spin-valley mixing and find that Johnson noise and two-phonon processes limit relaxation at low and high temperature respectively. We also investigate the effect of temperature on charge noise and find a linear dependence up to 4 K. These results contribute to the understanding of relaxation in silicon quantum dots and are promising for qubit operation at elevated temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.