In part one of this paper, the fracture processes of multiple transverse cracking and free edge delamination in composite laminates have been analyzed by an energy method. Numerical analyses and experimental examination using a series of T300/934 graphite epoxy laminates are pre sented in this part two. While part one is presented in a self-contained form, part two must be regarded as the continuation of part one.
A study was undertaken to investigate the loading rate effect on delamination fracture in itiation toughness of a thermoplastic composite. For this purpose, double cantilever beam specimens of graphite/PEEK were tested in a displacement controlled mode using an Instron tensile machine. Specimens were loaded at various crosshead speeds ranging from 0.05 cm/min to 100 cm/min. The interlaminar fracture toughness was found to decrease with increasing loading rate, and this decrease was up to 65 percent over the five decades of loading rate employed.
An investigation of the fracture mechanisms and behavior of sub-laminate cracking in graphite/epoxy composite laminates is presented. A series of laminates of the form (±25/90n)s is chosen for analytical modeling and compared with experimental results. By varying the number of 90-deg plies, indicated by n, several important and distinct fracture modes are identified. The thickness of the 90-deg layer is the single parameter that separates these fracture events. The present work focuses in particular on the mechanisms of transverse ply cracking and free-edge delamination.
The energy release rate approach of classical fracture mechanics is applied to describe the crack initiation fracture process. The cracking process is numerically simulated using a finite-element procedure formulated within the framework of ply elasticity and on the assumption of a generalized plane-strain state. The numerical procedure explicitly calculates the Mode I, Mode II, and Mode III components of the strain-energy release rate as a function of crack length. Unit mechanical and unit thermal load conditions are solved, and the results are superposed to obtain the general load case. The analytical model predicts the sequence of occurrence of the fracture modes and the critical onset loads.
The theoretical model is then correlated with published experimental data including tension tests on (±25/90n)s (n = ½, 1, 2, 3, 4, 6, and 8) laminate coupons manufactured using the T300/934 graphite/epoxy system and with fracture tests using double-cantileverbeam and cracked-lap-shear specimens. Good agreement is obtained between the theoretical and experimental results. The general nature of the present analytical method is readily applicable to composite laminates of more complicated structural geometry or loading conditions or both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.