Megawatt class Insulated Gate Bipolar Transistors [IGBTs] find many uses in industrial applications such as traction drives, induction heating and power factor correction. At present, these devices are not optimized for higher speed pulsed-power applications, such as kicker magnets or klystron modulators. This paper identifies fundamental issues that limit the dI/dt performance of standard commercial packages, and investigates several IGBT design optimizations that significantly improve high-speed performance at high peak power levels. The paper presents design concepts, results of electromagnetic simulations, and performance data of actual prototypes under high dI/dt conditions.
Megawatt class Insulated Gate Bipolar Transistors[IGBTs] find many uses in industrial applications such as traction drives, induction heating and power factor correction. At present, these devices are not optimized for higher speed pulsed-power applications, such as kicker magnets or klystron modulators.This paper identifies fundamental issues that limit the dIidt performance of standard commercial packages, and investigates several IGBT design optimizations that significantly improve high-speed performance at high peak power levels.The paper presents design concepts, results of electromagnetic simulations, and performance data of actual prototypes under high dI/dt conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.