Permafrost degradation of coastal and marine sediments of the Arctic Seas can result in large amounts of methane emitted to the atmosphere. The quantitative assessment of such emissions requires data on variability of methane content in various types of permafrost strata. To evaluate the methane concentrations in sediments and ground ice of the Kara Sea coast, samples were collected at a series of coastal exposures. Methane concentrations were determined for more than 400 samples taken from frozen sediments, ground ice and active layer. In frozen sediments, methane concentrations were lowest in sands and highest in marine clays. In ground ice, the highest concentrations above 500 ppmV and higher were found in massive tabular ground ice, with much lower methane concentrations in ground ice wedges. The mean isotopic composition of methane is −68.6‰ in permafrost and −63.6‰ in the active layer indicative of microbial genesis. The isotopic compositions of the active layer is enriched relative to permafrost due to microbial oxidation and become more depleted with depth. Ice-rich sediments of Kara Sea coasts, especially those with massive tabular ground ice, hold large amounts of methane making them potential sources of methane emissions under projected warming temperatures and increasing rates of coastal erosion.
Dating of marine sediments and faunal remains they contain in stratotype and reference sections by the methods of infrared optically stimulated luminescence (IR-OSL) of K-feldspar, optically stimulated afterglow (OSA) of quartz, electron spin resonance (ESR), and 230Th/U provides new constraints on deposition in the Yenisei mouth during the Kazantsevo interglacial. The luminescence and U–Th ages in the 120–68 ka range and 93–70 ka ESR ages show that the deposition spanned the whole marine isotope stage (MIS) 5. The sediment structures and textures, grain sizes and mineralogy, and faunal records indicate tidal and shelf deposition environments. The sampled assemblages of marine mollusks comprise taxa that typically live in relatively shallow and warm water, as well as abundant subarctic and boreal species, including the Arctica islandica index species. The variations of faunal patterns, more likely, had facies rather than climatic controls, while the sediments were deposited during transgression, in a warm climate, when the area was ice-free.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.