Hot‐spot models of initiation and detonation show that voids or porosity ranging from nanometer to micrometer in size within highly insensitive energetic materials affect initiability and detonation properties. Thus, the knowledge of the void size distribution, and how it changes with the volume expansion seen with temperature cycling, are important to understanding the properties of the insensitive explosive 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB). In this paper, void size distributions in the 2 nm to 2 μm regime, obtained from small‐angle X‐ray scattering measurements, are presented for LX‐17‐1, PBX‐9502, and ultra‐fine TATB formulations, both as processed and after thermal cycling. Two peaks were observed in the void size distribution: a narrow peak between 7–10 nm and a broad peak between 20 nm and about 1 mm. The first peak was attributed to porosity intrinsic to the TATB crystallites. The larger pores were believed to be intercrystalline, a result of incomplete consolidation during processing and pressing. After thermal cycling, these specimens showed an increase in both the number and size of these larger pores. These results illuminate the nature of the void distributions in these TATB‐based explosives from 2 nm to 2 μm and provide empirical experimental input for computational models of initiation and detonation.
ABSTRACT:Resorcinol-formaldehyde (RF) aerogel chemistry has been used with encapsulation techniques to fabricate low-density, transparent, foam shells. To accomplish this, the gelation time was reduced from several hours to several minutes by the addition of acid following base-catalyzed RF particle growth. However, additional ''annealing'' of the gel for at least 20 h was needed to maximize crosslinking and minimize swelling in exchange solvents. Increasing the molar ratio of formaldehyde to resorcinol from 2 to 3 also helped to increase crosslinking. Densification of the foam shells due to dehydration during curing was greatly reduced by judicious choice of immiscible oil phases and by saturating the exterior oil phase during the annealing stage. Shells have been produced with diameters of about 2 mm, wall thicknesses ranging from 100 to 200 mm and foam densities approaching 50 mg/cc.
TATB (1,3,5 triamino‐2,4,6‐trinitrobenzene), an extremely insensitive explosive, is used both in polymer‐bound explosives (PBXs) and as an ultra‐fine pressed powder (UFTATB). Many TATB‐based explosives, including LX‐17, a mixture of TATB and Kel‐F 800 binder, experience an irreversible expansion with temperature cycling known as ratchet growth. Additional voids, with sizes hundreds of nanometers to a few micrometers, account for much of the volume expansion. Measuring these voids is important feedback for hot‐spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding mechanisms for ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes, further extending PBX shelf life. This paper presents the void size distributions of LX‐17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between −55 and 70 °C. These void size distributions are derived from ultra‐small‐angle X‐ray scattering (USAXS), a technique sensitive to structures from about 2 nm to about 2 μm. Structures with these sizes do not appreciably change in UFTATB. Compared to TATB/Kel‐F 800, Cytop M and Cytop A show relatively small increases in void volume from 0.9 to 1.3% and 0.6 to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2–4.6%). Computational mesoscale models combined with experimental results indicate both high glass transition temperature as well as TATB binder adhesion and wetting are important to minimize ratchet growth.
Long-term geological disposal of nuclear waste requires corrosionresistant 'mister materials for encapsulation. Several austenitic stainless steels are under consideration for such purposes for the disposal of high-levl waste at the candidate repository site located at Yucca Mountain, Nevada. Witn regard to corrosion considerations, a worst case scenario at this prospective repository location would result from the intrusion of vadose water. This preliminary study focuses on the electrochemical and corrosion behavior of the candidate canister materials under worst-case repository environments. Electrochemical parameters related ;o localized attack (e.g., pitting potentials) and the electrochemical corrosion rates have been examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.