We have investigated the dynamic magnetic properties of dextran-coated magnetite (Fe3O4) nanoparticles in the form of (a) particles suspended in a carrier liquid and (b) concentrated powder obtained from lyophilization. The blocking temperature was found to increase from TB=42(2)to52(2)K (@μ0H=10mT) after lyophilization, showing the effects of dipolar interactions in samples with identical size distributions. The temperature dependence of the hyperfine field Bhyp(T) reveals the effects of collective magnetic excitations at low temperature, and allowed us to obtain the magnetic anisotropy energy Ea=3.6×10−21J for noninteracting particles. The obtained values can be understood assuming only magnetocrystalline anisotropy, without any additional contributions from surface, shape, or exchange origin. Moreover, a magnetocrystalline anisotropy constant value K1=10kJ∕m3 was obtained by assuming the cubic phase with easy magnetic direction [111] of the bulk material above the Verwey transition, supporting the idea that the Verwey transition is absent in nanosized particles. Accordingly, no indication of magnetic transition at TV could be observed in our measurements. From the dynamical parameters of ac susceptibility χ(f,T) curves, the contribution of the dipolar interactions to the total anisotropy energy barrier could be estimated to be Ω=4.5×10−21J, larger than the single-particle value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.